File size: 1,737 Bytes
e5be07d
7d4242a
 
 
e5be07d
 
7d4242a
1babf81
7d4242a
e5be07d
 
7d4242a
e5be07d
7d4242a
 
e5be07d
7d4242a
e5be07d
7d4242a
 
e5be07d
7d4242a
 
 
 
 
e5be07d
7d4242a
e5be07d
1babf81
e5be07d
 
7d4242a
e5be07d
7d4242a
e5be07d
7d4242a
 
 
 
 
e5be07d
7d4242a
e5be07d
 
 
7d4242a
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: transformers
model_name: sft-llama-cloud
tags:
- generated_from_trainer
- trl
- sft
licence: license
---

# Model Card for sft-llama-cloud

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Bakugo123/sft-llama-cloud", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/axiler/sft_llama3-8b-instruct-cloud-finetune-zeroshot/runs/n1k89f81) 


This model was trained with SFT.

### Framework versions

- TRL: 0.19.1
- Transformers: 4.53.1
- Pytorch: 2.7.1
- Datasets: 2.16.0
- Tokenizers: 0.21.2

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```