--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: bert_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5291073738680466 - name: Recall type: recall value: 0.3790546802594995 - name: F1 type: f1 value: 0.44168466522678185 - name: Accuracy type: accuracy value: 0.9476788920235958 --- # bert_wnut_model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3346 - Precision: 0.5291 - Recall: 0.3791 - F1: 0.4417 - Accuracy: 0.9477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2607 | 0.5443 | 0.2901 | 0.3785 | 0.9411 | | No log | 2.0 | 426 | 0.2689 | 0.5474 | 0.3318 | 0.4132 | 0.9453 | | 0.1554 | 3.0 | 639 | 0.2896 | 0.5253 | 0.3753 | 0.4378 | 0.9475 | | 0.1554 | 4.0 | 852 | 0.3009 | 0.5079 | 0.3865 | 0.4389 | 0.9474 | | 0.0349 | 5.0 | 1065 | 0.3195 | 0.5109 | 0.3920 | 0.4436 | 0.9486 | | 0.0349 | 6.0 | 1278 | 0.3346 | 0.5291 | 0.3791 | 0.4417 | 0.9477 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1