--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5218476903870163 - name: Recall type: recall value: 0.3873957367933272 - name: F1 type: f1 value: 0.4446808510638298 - name: Accuracy type: accuracy value: 0.946346885554273 --- # distilbert_wnut_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3052 - Precision: 0.5218 - Recall: 0.3874 - F1: 0.4447 - Accuracy: 0.9463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2801 | 0.5586 | 0.2428 | 0.3385 | 0.9384 | | No log | 2.0 | 426 | 0.2573 | 0.5228 | 0.2975 | 0.3792 | 0.9425 | | 0.1769 | 3.0 | 639 | 0.2859 | 0.5510 | 0.3253 | 0.4091 | 0.9450 | | 0.1769 | 4.0 | 852 | 0.2965 | 0.5499 | 0.3522 | 0.4294 | 0.9462 | | 0.0496 | 5.0 | 1065 | 0.2951 | 0.5123 | 0.3846 | 0.4394 | 0.9458 | | 0.0496 | 6.0 | 1278 | 0.3052 | 0.5218 | 0.3874 | 0.4447 | 0.9463 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1