Upload . with huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +218 -0
- config.json +67 -0
- geographic.png +0 -0
- model.skops +3 -0
- permutation-importances.png +0 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
model.skops filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-regression
|
7 |
+
model_format: skops
|
8 |
+
model_file: model.skops
|
9 |
+
widget:
|
10 |
+
structuredData:
|
11 |
+
AveBedrms:
|
12 |
+
- 0.9290780141843972
|
13 |
+
- 0.9458483754512635
|
14 |
+
- 1.087360594795539
|
15 |
+
AveOccup:
|
16 |
+
- 3.1134751773049647
|
17 |
+
- 3.0613718411552346
|
18 |
+
- 3.2657992565055762
|
19 |
+
AveRooms:
|
20 |
+
- 6.304964539007092
|
21 |
+
- 6.945848375451264
|
22 |
+
- 3.8884758364312266
|
23 |
+
HouseAge:
|
24 |
+
- 17.0
|
25 |
+
- 15.0
|
26 |
+
- 24.0
|
27 |
+
Latitude:
|
28 |
+
- 34.23
|
29 |
+
- 36.84
|
30 |
+
- 34.04
|
31 |
+
Longitude:
|
32 |
+
- -117.41
|
33 |
+
- -119.77
|
34 |
+
- -118.3
|
35 |
+
MedInc:
|
36 |
+
- 6.1426
|
37 |
+
- 5.3886
|
38 |
+
- 1.7109
|
39 |
+
Population:
|
40 |
+
- 439.0
|
41 |
+
- 848.0
|
42 |
+
- 1757.0
|
43 |
+
---
|
44 |
+
|
45 |
+
# Model description
|
46 |
+
|
47 |
+
Gradient boosting regressor trained on California Housing dataset
|
48 |
+
|
49 |
+
The model is a gradient boosting regressor from sklearn. On top of the standard
|
50 |
+
features, it contains predictions from a KNN models. These predictions are calculated
|
51 |
+
out of fold, then added on top of the existing features. These features are really
|
52 |
+
helpful for decision tree-based models, since those cannot easily learn from geospatial
|
53 |
+
data.
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
This model is meant for demonstration purposes
|
58 |
+
|
59 |
+
## Training Procedure
|
60 |
+
|
61 |
+
### Hyperparameters
|
62 |
+
|
63 |
+
The model is trained with below hyperparameters.
|
64 |
+
|
65 |
+
<details>
|
66 |
+
<summary> Click to expand </summary>
|
67 |
+
|
68 |
+
| Hyperparameter | Value |
|
69 |
+
|-----------------------------------------------|--------------------------------------------------------------|
|
70 |
+
| cv | |
|
71 |
+
| estimators | [('knn@5', Pipeline(steps=[('select_cols',<br /> ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])),<br /> ('knn', KNeighborsRegressor())]))] |
|
72 |
+
| final_estimator__alpha | 0.9 |
|
73 |
+
| final_estimator__ccp_alpha | 0.0 |
|
74 |
+
| final_estimator__criterion | friedman_mse |
|
75 |
+
| final_estimator__init | |
|
76 |
+
| final_estimator__learning_rate | 0.1 |
|
77 |
+
| final_estimator__loss | squared_error |
|
78 |
+
| final_estimator__max_depth | 3 |
|
79 |
+
| final_estimator__max_features | |
|
80 |
+
| final_estimator__max_leaf_nodes | |
|
81 |
+
| final_estimator__min_impurity_decrease | 0.0 |
|
82 |
+
| final_estimator__min_samples_leaf | 1 |
|
83 |
+
| final_estimator__min_samples_split | 2 |
|
84 |
+
| final_estimator__min_weight_fraction_leaf | 0.0 |
|
85 |
+
| final_estimator__n_estimators | 500 |
|
86 |
+
| final_estimator__n_iter_no_change | |
|
87 |
+
| final_estimator__random_state | 0 |
|
88 |
+
| final_estimator__subsample | 1.0 |
|
89 |
+
| final_estimator__tol | 0.0001 |
|
90 |
+
| final_estimator__validation_fraction | 0.1 |
|
91 |
+
| final_estimator__verbose | 0 |
|
92 |
+
| final_estimator__warm_start | False |
|
93 |
+
| final_estimator | GradientBoostingRegressor(n_estimators=500, random_state=0) |
|
94 |
+
| n_jobs | |
|
95 |
+
| passthrough | True |
|
96 |
+
| verbose | 0 |
|
97 |
+
| knn@5 | Pipeline(steps=[('select_cols',<br /> ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])),<br /> ('knn', KNeighborsRegressor())]) |
|
98 |
+
| knn@5__memory | |
|
99 |
+
| knn@5__steps | [('select_cols', ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])), ('knn', KNeighborsRegressor())] |
|
100 |
+
| knn@5__verbose | False |
|
101 |
+
| knn@5__select_cols | ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])]) |
|
102 |
+
| knn@5__knn | KNeighborsRegressor() |
|
103 |
+
| knn@5__select_cols__n_jobs | |
|
104 |
+
| knn@5__select_cols__remainder | drop |
|
105 |
+
| knn@5__select_cols__sparse_threshold | 0.3 |
|
106 |
+
| knn@5__select_cols__transformer_weights | |
|
107 |
+
| knn@5__select_cols__transformers | [('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])] |
|
108 |
+
| knn@5__select_cols__verbose | False |
|
109 |
+
| knn@5__select_cols__verbose_feature_names_out | True |
|
110 |
+
| knn@5__select_cols__long_and_lat | passthrough |
|
111 |
+
| knn@5__knn__algorithm | auto |
|
112 |
+
| knn@5__knn__leaf_size | 30 |
|
113 |
+
| knn@5__knn__metric | minkowski |
|
114 |
+
| knn@5__knn__metric_params | |
|
115 |
+
| knn@5__knn__n_jobs | |
|
116 |
+
| knn@5__knn__n_neighbors | 5 |
|
117 |
+
| knn@5__knn__p | 2 |
|
118 |
+
| knn@5__knn__weights | uniform |
|
119 |
+
|
120 |
+
</details>
|
121 |
+
|
122 |
+
### Model Plot
|
123 |
+
|
124 |
+
The model plot is below.
|
125 |
+
|
126 |
+
<style>#sk-container-id-14 {color: black;background-color: white;}#sk-container-id-14 pre{padding: 0;}#sk-container-id-14 div.sk-toggleable {background-color: white;}#sk-container-id-14 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-14 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-14 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-14 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-14 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-14 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-14 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-14 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-14 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-14 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-14 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-14 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-14 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-14 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-14 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-14 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-14 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-14 div.sk-item {position: relative;z-index: 1;}#sk-container-id-14 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-14 div.sk-item::before, #sk-container-id-14 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-14 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-14 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-14 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-14 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-14 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-14 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-14 div.sk-label-container {text-align: center;}#sk-container-id-14 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-14 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-14" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>StackingRegressor(estimators=[('knn@5',Pipeline(steps=[('select_cols',ColumnTransformer(transformers=[('long_and_lat','passthrough',['Longitude','Latitude'])])),('knn',KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-44" type="checkbox" ><label for="sk-estimator-id-44" class="sk-toggleable__label sk-toggleable__label-arrow">StackingRegressor</label><div class="sk-toggleable__content"><pre>StackingRegressor(estimators=[('knn@5',Pipeline(steps=[('select_cols',ColumnTransformer(transformers=[('long_and_lat','passthrough',['Longitude','Latitude'])])),('knn',KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>knn@5</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-45" type="checkbox" ><label for="sk-estimator-id-45" class="sk-toggleable__label sk-toggleable__label-arrow">select_cols: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('long_and_lat', 'passthrough',['Longitude', 'Latitude'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-46" type="checkbox" ><label for="sk-estimator-id-46" class="sk-toggleable__label sk-toggleable__label-arrow">long_and_lat</label><div class="sk-toggleable__content"><pre>['Longitude', 'Latitude']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-47" type="checkbox" ><label for="sk-estimator-id-47" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-48" type="checkbox" ><label for="sk-estimator-id-48" class="sk-toggleable__label sk-toggleable__label-arrow">KNeighborsRegressor</label><div class="sk-toggleable__content"><pre>KNeighborsRegressor()</pre></div></div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>final_estimator</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-49" type="checkbox" ><label for="sk-estimator-id-49" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(n_estimators=500, random_state=0)</pre></div></div></div></div></div></div></div></div></div></div></div></div>
|
127 |
+
|
128 |
+
## Evaluation Results
|
129 |
+
|
130 |
+
Metrics are calculated on the test set
|
131 |
+
|
132 |
+
| Metric | Value |
|
133 |
+
|-------------------------|--------------|
|
134 |
+
| Root mean squared error | 44273.5 |
|
135 |
+
| Mean absolute error | 30079.9 |
|
136 |
+
| R² | 0.805954 |
|
137 |
+
|
138 |
+
## Dataset description
|
139 |
+
|
140 |
+
California Housing dataset
|
141 |
+
--------------------------
|
142 |
+
|
143 |
+
**Data Set Characteristics:**
|
144 |
+
|
145 |
+
:Number of Instances: 20640
|
146 |
+
|
147 |
+
:Number of Attributes: 8 numeric, predictive attributes and the target
|
148 |
+
|
149 |
+
:Attribute Information:
|
150 |
+
- MedInc median income in block group
|
151 |
+
- HouseAge median house age in block group
|
152 |
+
- AveRooms average number of rooms per household
|
153 |
+
- AveBedrms average number of bedrooms per household
|
154 |
+
- Population block group population
|
155 |
+
- AveOccup average number of household members
|
156 |
+
- Latitude block group latitude
|
157 |
+
- Longitude block group longitude
|
158 |
+
|
159 |
+
:Missing Attribute Values: None
|
160 |
+
|
161 |
+
This dataset was obtained from the StatLib repository.
|
162 |
+
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
|
163 |
+
|
164 |
+
The target variable is the median house value for California districts,
|
165 |
+
expressed in hundreds of thousands of dollars ($100,000).
|
166 |
+
|
167 |
+
This dataset was derived from the 1990 U.S. census, using one row per census
|
168 |
+
block group. A block group is the smallest geographical unit for which the U.S.
|
169 |
+
Census Bureau publishes sample data (a block group typically has a population
|
170 |
+
of 600 to 3,000 people).
|
171 |
+
|
172 |
+
An household is a group of people residing within a home. Since the average
|
173 |
+
number of rooms and bedrooms in this dataset are provided per household, these
|
174 |
+
columns may take surpinsingly large values for block groups with few households
|
175 |
+
and many empty houses, such as vacation resorts.
|
176 |
+
|
177 |
+
It can be downloaded/loaded using the
|
178 |
+
:func:`sklearn.datasets.fetch_california_housing` function.
|
179 |
+
|
180 |
+
.. topic:: References
|
181 |
+
|
182 |
+
- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
|
183 |
+
Statistics and Probability Letters, 33 (1997) 291-297
|
184 |
+
|
185 |
+
### Data distribution
|
186 |
+
|
187 |
+
<details>
|
188 |
+
<summary> Click to expand </summary>
|
189 |
+
|
190 |
+
![Data distribution](geographic.png)
|
191 |
+
|
192 |
+
</details>
|
193 |
+
|
194 |
+
# How to Get Started with the Model
|
195 |
+
|
196 |
+
Run the code below to load the model
|
197 |
+
|
198 |
+
```python
|
199 |
+
import json
|
200 |
+
import pandas as pd
|
201 |
+
import skops.io as sio
|
202 |
+
model = sio.load("model.skops")
|
203 |
+
with open("config.json") as f:
|
204 |
+
config = json.load(f)
|
205 |
+
model.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
|
206 |
+
```
|
207 |
+
|
208 |
+
# Model Card Authors
|
209 |
+
|
210 |
+
Benjamin Bossan
|
211 |
+
|
212 |
+
# Model Card Contact
|
213 |
+
|
214 | |
215 |
+
|
216 |
+
# Permutation Importances
|
217 |
+
|
218 |
+
![Permutation Importances](permutation-importances.png)
|
config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"MedInc",
|
5 |
+
"HouseAge",
|
6 |
+
"AveRooms",
|
7 |
+
"AveBedrms",
|
8 |
+
"Population",
|
9 |
+
"AveOccup",
|
10 |
+
"Latitude",
|
11 |
+
"Longitude"
|
12 |
+
],
|
13 |
+
"environment": [
|
14 |
+
"scikit-learn==1.2.0",
|
15 |
+
"pandas==1.5.3",
|
16 |
+
"skops==0.6.dev0"
|
17 |
+
],
|
18 |
+
"example_input": {
|
19 |
+
"AveBedrms": [
|
20 |
+
0.9290780141843972,
|
21 |
+
0.9458483754512635,
|
22 |
+
1.087360594795539
|
23 |
+
],
|
24 |
+
"AveOccup": [
|
25 |
+
3.1134751773049647,
|
26 |
+
3.0613718411552346,
|
27 |
+
3.2657992565055762
|
28 |
+
],
|
29 |
+
"AveRooms": [
|
30 |
+
6.304964539007092,
|
31 |
+
6.945848375451264,
|
32 |
+
3.8884758364312266
|
33 |
+
],
|
34 |
+
"HouseAge": [
|
35 |
+
17.0,
|
36 |
+
15.0,
|
37 |
+
24.0
|
38 |
+
],
|
39 |
+
"Latitude": [
|
40 |
+
34.23,
|
41 |
+
36.84,
|
42 |
+
34.04
|
43 |
+
],
|
44 |
+
"Longitude": [
|
45 |
+
-117.41,
|
46 |
+
-119.77,
|
47 |
+
-118.3
|
48 |
+
],
|
49 |
+
"MedInc": [
|
50 |
+
6.1426,
|
51 |
+
5.3886,
|
52 |
+
1.7109
|
53 |
+
],
|
54 |
+
"Population": [
|
55 |
+
439.0,
|
56 |
+
848.0,
|
57 |
+
1757.0
|
58 |
+
]
|
59 |
+
},
|
60 |
+
"model": {
|
61 |
+
"file": "model.skops"
|
62 |
+
},
|
63 |
+
"model_format": "skops",
|
64 |
+
"task": "tabular-regression",
|
65 |
+
"use_intelex": false
|
66 |
+
}
|
67 |
+
}
|
geographic.png
ADDED
model.skops
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a552edab9caf8d1e455960f3d9fcf6d0a520035f420f9791c65e539e0248715e
|
3 |
+
size 14674596
|
permutation-importances.png
ADDED