BlackBeenie commited on
Commit
889f18a
·
verified ·
1 Parent(s): d10a014

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:498970
8
+ - loss:BPRLoss
9
+ base_model: nomic-ai/nomic-embed-text-v2-moe
10
+ widget:
11
+ - source_sentence: what was the start treaty 2010
12
+ sentences:
13
+ - "Strategic Offensive Reductions: The Treaty between the United States of America\
14
+ \ and the Russian Federation on Measures for the Further Reduction and Limitation\
15
+ \ of Strategic Offensive Arms, also known as the New START Treaty, entered into\
16
+ \ force on February 5, 2011.nder the Treaty, the United States and Russia must\
17
+ \ meet the Treatyâ\x80\x99s central limits on strategic arms by February 5, 2018;\
18
+ \ seven years from the date the Treaty entered into force. Each Party has the\
19
+ \ flexibility to determine for itself the structure of its strategic forces within\
20
+ \ the aggregate limits of the Treaty."
21
+ - 'Nuclear pharmacy practice: hour-for-hour credit in a licensed nuclear pharmacy
22
+ or health care facility approved by state or federal agencies to handle radioactive
23
+ materials, to a maximum of 4,000 hours.'
24
+ - 'Signed: 18 June 1979. Entered into Force: Never entered into force; superseded
25
+ by the START I Treaty in 1991. Duration: Until 31 December 1985; unless the Treaty
26
+ is replaced earlier by an agreement further limiting strategic offensive arms.
27
+ Parties: Soviet Union and United States.'
28
+ - source_sentence: is pez a word
29
+ sentences:
30
+ - From dispensers to candy, there's a PEZ for anyone and everyone. Look for these
31
+ PEZ products at your local retailer.rom dispensers to candy, there's a PEZ for
32
+ anyone and everyone. Look for these PEZ products at your local retailer.
33
+ - PEZ was first introduced in 1927 in Vienna, Austria as a breath mint for adults!
34
+ The word PEZ was created using the first, middle and last letter in the German
35
+ word for peppermint P feff E rmin Z.
36
+ - Boonville is a city in Boon Township, Warrick County, Indiana, United States.
37
+ The population was 6,246 at the 2010 census.The city is the county seat of Warrick
38
+ County.oonville was founded in 1818 and named for Jesse Boon, father of Ratliff
39
+ Boon. A post office has been in operation at Boonville since 1820. Boonville was
40
+ incorporated in 1858.
41
+ - source_sentence: us budget deficit by president
42
+ sentences:
43
+ - "By 2022, the government will once again be running trillion-dollar deficits,\
44
+ \ the report said. â\x80\x9CWe still have a lot of work to do,â\x80\x9D said House\
45
+ \ Budget Committee Chairman Paul Ryan. Lawmakers can take some credit for the\
46
+ \ short-term improvement in the budget outlook, the report showed, though the\
47
+ \ strengthening economy helps as well."
48
+ - However, when they are 3 to 4 months old, they become susceptible to the disease,
49
+ so all calves should be vaccinated for blackleg by 4 months of age. A revaccination
50
+ 3 to 6 weeks later according to product label directions is necessary to provide
51
+ the best protec-tion.lackleg seldom affects cattle older than 2 years of age,
52
+ most likely due to immunity induced by vaccines or natural exposure. However,
53
+ sporadic cases do occur in cattle older than 2 years and are often associated
54
+ with the reuse of needles for multiple injections.
55
+ - According to this method, Barack Obama's budget is projected to run a deficit
56
+ of $7.3 trillion over his eight years, making him the president with the largest
57
+ budget deficit. George W. Bush is second, with a deficit of $3.29 trillion over
58
+ his eight years.
59
+ - source_sentence: what is a sixth sense
60
+ sentences:
61
+ - 1 Extrasensory perception (ESP), commonly called the sixth sense. 2 Equilibrioception
62
+ (sense of balance) and proprioception (sense of body position), commonly accepted
63
+ physiological senses in addition to the usually considered five senses.
64
+ - 'Glaze or glazing may refer to: 1 Glaze (metallurgy), a layer of compacted sintered
65
+ oxide formed on some metals. 2 Glaze (cooking technique), a coating of a glossy,
66
+ often sweet, mixture applied to food. Glaze (painting technique), a layer of
67
+ paint, thinned with a medium, so as to become somewhat transparent.'
68
+ - Definition of Proprioception. The term proprioception is used to describe the
69
+ sensory information that contributes to the sense of position of self and movement.
70
+ Sir Charles Bell named the sixth sense as the sense of the positions and actions
71
+ of the limbs (McCloskey 1978).eceptors of Proprioception. It is well recognized
72
+ that joint movements activate receptors in the joint, skin and muscle. In turn,
73
+ any of these receptors may play a role in the perception and control of limb movement
74
+ and joint angle.
75
+ - source_sentence: what services are offered by adult day care
76
+ sentences:
77
+ - The Met Life Market survey of 2008 on adult day services states the average cost
78
+ for adult day care services is $64 per day. There has been an increase of 5% in
79
+ these services in the past year.
80
+ - Consumer Guide to Long Term Care. Adult Day Care. Adult day care is a planned
81
+ program offered in a group setting that provides services that improve or maintain
82
+ health or functioning, and social activities for seniors and persons with disabilities.
83
+ - As nouns the difference between tackle and guard is that tackle is (nautical)
84
+ a system of ropes and blocks used to increase the force applied to the free end
85
+ of the rope while guard is a person who, or thing that, protects or watches over
86
+ something. As verbs the difference between tackle and guard
87
+ pipeline_tag: sentence-similarity
88
+ library_name: sentence-transformers
89
+ ---
90
+
91
+ # SentenceTransformer based on nomic-ai/nomic-embed-text-v2-moe
92
+
93
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
94
+
95
+ ## Model Details
96
+
97
+ ### Model Description
98
+ - **Model Type:** Sentence Transformer
99
+ - **Base model:** [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) <!-- at revision f6a8873b415144a69ffc529ec1e234d1e00ee765 -->
100
+ - **Maximum Sequence Length:** 8192 tokens
101
+ - **Output Dimensionality:** 768 dimensions
102
+ - **Similarity Function:** Cosine Similarity
103
+ <!-- - **Training Dataset:** Unknown -->
104
+ <!-- - **Language:** Unknown -->
105
+ <!-- - **License:** Unknown -->
106
+
107
+ ### Model Sources
108
+
109
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
110
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
111
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
112
+
113
+ ### Full Model Architecture
114
+
115
+ ```
116
+ SentenceTransformer(
117
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
118
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
119
+ )
120
+ ```
121
+
122
+ ## Usage
123
+
124
+ ### Direct Usage (Sentence Transformers)
125
+
126
+ First install the Sentence Transformers library:
127
+
128
+ ```bash
129
+ pip install -U sentence-transformers
130
+ ```
131
+
132
+ Then you can load this model and run inference.
133
+ ```python
134
+ from sentence_transformers import SentenceTransformer
135
+
136
+ # Download from the 🤗 Hub
137
+ model = SentenceTransformer("BlackBeenie/nomic-embed-text-v2-moe-msmarco-bpr")
138
+ # Run inference
139
+ sentences = [
140
+ 'what services are offered by adult day care',
141
+ 'Consumer Guide to Long Term Care. Adult Day Care. Adult day care is a planned program offered in a group setting that provides services that improve or maintain health or functioning, and social activities for seniors and persons with disabilities.',
142
+ 'The Met Life Market survey of 2008 on adult day services states the average cost for adult day care services is $64 per day. There has been an increase of 5% in these services in the past year.',
143
+ ]
144
+ embeddings = model.encode(sentences)
145
+ print(embeddings.shape)
146
+ # [3, 768]
147
+
148
+ # Get the similarity scores for the embeddings
149
+ similarities = model.similarity(embeddings, embeddings)
150
+ print(similarities.shape)
151
+ # [3, 3]
152
+ ```
153
+
154
+ <!--
155
+ ### Direct Usage (Transformers)
156
+
157
+ <details><summary>Click to see the direct usage in Transformers</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Downstream Usage (Sentence Transformers)
164
+
165
+ You can finetune this model on your own dataset.
166
+
167
+ <details><summary>Click to expand</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Out-of-Scope Use
174
+
175
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
176
+ -->
177
+
178
+ <!--
179
+ ## Bias, Risks and Limitations
180
+
181
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
182
+ -->
183
+
184
+ <!--
185
+ ### Recommendations
186
+
187
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
188
+ -->
189
+
190
+ ## Training Details
191
+
192
+ ### Training Dataset
193
+
194
+ #### Unnamed Dataset
195
+
196
+ * Size: 498,970 training samples
197
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
198
+ * Approximate statistics based on the first 1000 samples:
199
+ | | sentence_0 | sentence_1 | sentence_2 |
200
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
201
+ | type | string | string | string |
202
+ | details | <ul><li>min: 4 tokens</li><li>mean: 9.75 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 89.23 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 86.66 tokens</li><li>max: 280 tokens</li></ul> |
203
+ * Samples:
204
+ | sentence_0 | sentence_1 | sentence_2 |
205
+ |:------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
206
+ | <code>what the history of bluetooth</code> | <code>When asked about the name Bluetooth, I explained that Bluetooth was borrowed from the 10th century, second King of Denmark, King Harald Bluetooth; who was famous for uniting Scandinavia just as we intended to unite the PC and cellular industries with a short-range wireless link.</code> | <code>Technology: 1 How secure is a Bluetooth network? 2 What is Frequency-Hopping Spread Spectrum (FHSS)? 3 Will other RF (Radio Frequency) devices interfere with Bluetooth Devices? 4 Will Bluetooth and Wireless LAN (WLAN) interfere with each other? 5 What is the data throughput speed of a Bluetooth connection? 6 What is the range of Bluetooth 7 ... What kind of ...</code> |
207
+ | <code>how thin can a concrete slab be</code> | <code>Another issue that must be addressed is the added weight of the thin-slab. Poured gypsum thin-slabs typically add 13 to 15 pounds per square foot to the dead loading of a floor structure. Standard weight concrete thin slabs add about 18 pounds per square foot (at 1.5 thickness).</code> | <code>Find the Area in square feet: We will use a concrete slab pour for our example. Let’s say that we need to figure out the yardage for a slab that will be 15 feet long by 10 feet wide and 4 inches thick. First we find the area by multiplying the length times the width. 1 15 feet X 10 feet = 150 square feet.</code> |
208
+ | <code>how long to cook eggs to hard boil</code> | <code>This method works best if the eggs are in a single layer, but you can double them up as well, you'll just need to add more time to the steaming time. 3 Set your timer for 6 minutes for soft boiled, 10 minutes for hard boiled with a still translucent and bright yolk, or 12-15 minutes for cooked-through hard boiled.</code> | <code>Hard-Steamed Eggs. Fill a pot that can comfortably hold your steamer with the lid on with 1 to 2 inches of water. Bring to a rolling boil, 212 degrees Fahrenheit. Place your eggs in a metal steamer, and lower the basket into the pot. The eggs should sit above the boiling water. Cover and cook for 12 minutes. Hard-steamed eggs, like hard-boiled eggs, are eggs that are cooked until the egg yolk is fully set and has turned to a chalky texture.</code> |
209
+ * Loss: <code>beir.losses.bpr_loss.BPRLoss</code>
210
+
211
+ ### Training Hyperparameters
212
+ #### Non-Default Hyperparameters
213
+
214
+ - `eval_strategy`: steps
215
+ - `per_device_train_batch_size`: 32
216
+ - `per_device_eval_batch_size`: 32
217
+ - `num_train_epochs`: 5
218
+ - `fp16`: True
219
+ - `multi_dataset_batch_sampler`: round_robin
220
+
221
+ #### All Hyperparameters
222
+ <details><summary>Click to expand</summary>
223
+
224
+ - `overwrite_output_dir`: False
225
+ - `do_predict`: False
226
+ - `eval_strategy`: steps
227
+ - `prediction_loss_only`: True
228
+ - `per_device_train_batch_size`: 32
229
+ - `per_device_eval_batch_size`: 32
230
+ - `per_gpu_train_batch_size`: None
231
+ - `per_gpu_eval_batch_size`: None
232
+ - `gradient_accumulation_steps`: 1
233
+ - `eval_accumulation_steps`: None
234
+ - `torch_empty_cache_steps`: None
235
+ - `learning_rate`: 5e-05
236
+ - `weight_decay`: 0.0
237
+ - `adam_beta1`: 0.9
238
+ - `adam_beta2`: 0.999
239
+ - `adam_epsilon`: 1e-08
240
+ - `max_grad_norm`: 1
241
+ - `num_train_epochs`: 5
242
+ - `max_steps`: -1
243
+ - `lr_scheduler_type`: linear
244
+ - `lr_scheduler_kwargs`: {}
245
+ - `warmup_ratio`: 0.0
246
+ - `warmup_steps`: 0
247
+ - `log_level`: passive
248
+ - `log_level_replica`: warning
249
+ - `log_on_each_node`: True
250
+ - `logging_nan_inf_filter`: True
251
+ - `save_safetensors`: True
252
+ - `save_on_each_node`: False
253
+ - `save_only_model`: False
254
+ - `restore_callback_states_from_checkpoint`: False
255
+ - `no_cuda`: False
256
+ - `use_cpu`: False
257
+ - `use_mps_device`: False
258
+ - `seed`: 42
259
+ - `data_seed`: None
260
+ - `jit_mode_eval`: False
261
+ - `use_ipex`: False
262
+ - `bf16`: False
263
+ - `fp16`: True
264
+ - `fp16_opt_level`: O1
265
+ - `half_precision_backend`: auto
266
+ - `bf16_full_eval`: False
267
+ - `fp16_full_eval`: False
268
+ - `tf32`: None
269
+ - `local_rank`: 0
270
+ - `ddp_backend`: None
271
+ - `tpu_num_cores`: None
272
+ - `tpu_metrics_debug`: False
273
+ - `debug`: []
274
+ - `dataloader_drop_last`: False
275
+ - `dataloader_num_workers`: 0
276
+ - `dataloader_prefetch_factor`: None
277
+ - `past_index`: -1
278
+ - `disable_tqdm`: False
279
+ - `remove_unused_columns`: True
280
+ - `label_names`: None
281
+ - `load_best_model_at_end`: False
282
+ - `ignore_data_skip`: False
283
+ - `fsdp`: []
284
+ - `fsdp_min_num_params`: 0
285
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
286
+ - `fsdp_transformer_layer_cls_to_wrap`: None
287
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
288
+ - `deepspeed`: None
289
+ - `label_smoothing_factor`: 0.0
290
+ - `optim`: adamw_torch
291
+ - `optim_args`: None
292
+ - `adafactor`: False
293
+ - `group_by_length`: False
294
+ - `length_column_name`: length
295
+ - `ddp_find_unused_parameters`: None
296
+ - `ddp_bucket_cap_mb`: None
297
+ - `ddp_broadcast_buffers`: False
298
+ - `dataloader_pin_memory`: True
299
+ - `dataloader_persistent_workers`: False
300
+ - `skip_memory_metrics`: True
301
+ - `use_legacy_prediction_loop`: False
302
+ - `push_to_hub`: False
303
+ - `resume_from_checkpoint`: None
304
+ - `hub_model_id`: None
305
+ - `hub_strategy`: every_save
306
+ - `hub_private_repo`: None
307
+ - `hub_always_push`: False
308
+ - `gradient_checkpointing`: False
309
+ - `gradient_checkpointing_kwargs`: None
310
+ - `include_inputs_for_metrics`: False
311
+ - `include_for_metrics`: []
312
+ - `eval_do_concat_batches`: True
313
+ - `fp16_backend`: auto
314
+ - `push_to_hub_model_id`: None
315
+ - `push_to_hub_organization`: None
316
+ - `mp_parameters`:
317
+ - `auto_find_batch_size`: False
318
+ - `full_determinism`: False
319
+ - `torchdynamo`: None
320
+ - `ray_scope`: last
321
+ - `ddp_timeout`: 1800
322
+ - `torch_compile`: False
323
+ - `torch_compile_backend`: None
324
+ - `torch_compile_mode`: None
325
+ - `dispatch_batches`: None
326
+ - `split_batches`: None
327
+ - `include_tokens_per_second`: False
328
+ - `include_num_input_tokens_seen`: False
329
+ - `neftune_noise_alpha`: None
330
+ - `optim_target_modules`: None
331
+ - `batch_eval_metrics`: False
332
+ - `eval_on_start`: False
333
+ - `use_liger_kernel`: False
334
+ - `eval_use_gather_object`: False
335
+ - `average_tokens_across_devices`: False
336
+ - `prompts`: None
337
+ - `batch_sampler`: batch_sampler
338
+ - `multi_dataset_batch_sampler`: round_robin
339
+
340
+ </details>
341
+
342
+ ### Training Logs
343
+ <details><summary>Click to expand</summary>
344
+
345
+ | Epoch | Step | Training Loss |
346
+ |:------:|:-----:|:-------------:|
347
+ | 0.0321 | 500 | 0.3396 |
348
+ | 0.0641 | 1000 | 0.2094 |
349
+ | 0.0962 | 1500 | 0.21 |
350
+ | 0.1283 | 2000 | 0.1955 |
351
+ | 0.1603 | 2500 | 0.1989 |
352
+ | 0.1924 | 3000 | 0.1851 |
353
+ | 0.2245 | 3500 | 0.1839 |
354
+ | 0.2565 | 4000 | 0.1859 |
355
+ | 0.2886 | 4500 | 0.1892 |
356
+ | 0.3207 | 5000 | 0.1865 |
357
+ | 0.3527 | 5500 | 0.1773 |
358
+ | 0.3848 | 6000 | 0.1796 |
359
+ | 0.4169 | 6500 | 0.1929 |
360
+ | 0.4489 | 7000 | 0.1829 |
361
+ | 0.4810 | 7500 | 0.172 |
362
+ | 0.5131 | 8000 | 0.1792 |
363
+ | 0.5451 | 8500 | 0.1747 |
364
+ | 0.5772 | 9000 | 0.1802 |
365
+ | 0.6092 | 9500 | 0.1856 |
366
+ | 0.6413 | 10000 | 0.1751 |
367
+ | 0.6734 | 10500 | 0.173 |
368
+ | 0.7054 | 11000 | 0.1774 |
369
+ | 0.7375 | 11500 | 0.1722 |
370
+ | 0.7696 | 12000 | 0.1825 |
371
+ | 0.8016 | 12500 | 0.1714 |
372
+ | 0.8337 | 13000 | 0.1732 |
373
+ | 0.8658 | 13500 | 0.167 |
374
+ | 0.8978 | 14000 | 0.1792 |
375
+ | 0.9299 | 14500 | 0.1697 |
376
+ | 0.9620 | 15000 | 0.1682 |
377
+ | 0.9940 | 15500 | 0.1764 |
378
+ | 1.0 | 15593 | - |
379
+ | 1.0261 | 16000 | 0.0875 |
380
+ | 1.0582 | 16500 | 0.0798 |
381
+ | 1.0902 | 17000 | 0.0764 |
382
+ | 1.1223 | 17500 | 0.0783 |
383
+ | 1.1544 | 18000 | 0.0759 |
384
+ | 1.1864 | 18500 | 0.0834 |
385
+ | 1.2185 | 19000 | 0.082 |
386
+ | 1.2506 | 19500 | 0.0827 |
387
+ | 1.2826 | 20000 | 0.0876 |
388
+ | 1.3147 | 20500 | 0.0819 |
389
+ | 1.3468 | 21000 | 0.0841 |
390
+ | 1.3788 | 21500 | 0.0815 |
391
+ | 1.4109 | 22000 | 0.0819 |
392
+ | 1.4430 | 22500 | 0.0883 |
393
+ | 1.4750 | 23000 | 0.0826 |
394
+ | 1.5071 | 23500 | 0.0837 |
395
+ | 1.5392 | 24000 | 0.086 |
396
+ | 1.5712 | 24500 | 0.0806 |
397
+ | 1.6033 | 25000 | 0.0918 |
398
+ | 1.6353 | 25500 | 0.0885 |
399
+ | 1.6674 | 26000 | 0.0885 |
400
+ | 1.6995 | 26500 | 0.088 |
401
+ | 1.7315 | 27000 | 0.0843 |
402
+ | 1.7636 | 27500 | 0.0915 |
403
+ | 1.7957 | 28000 | 0.0843 |
404
+ | 1.8277 | 28500 | 0.0868 |
405
+ | 1.8598 | 29000 | 0.0857 |
406
+ | 1.8919 | 29500 | 0.0931 |
407
+ | 1.9239 | 30000 | 0.0852 |
408
+ | 1.9560 | 30500 | 0.0913 |
409
+ | 1.9881 | 31000 | 0.0857 |
410
+ | 2.0 | 31186 | - |
411
+ | 2.0201 | 31500 | 0.0547 |
412
+ | 2.0522 | 32000 | 0.0459 |
413
+ | 2.0843 | 32500 | 0.0451 |
414
+ | 2.1163 | 33000 | 0.0407 |
415
+ | 2.1484 | 33500 | 0.0469 |
416
+ | 2.1805 | 34000 | 0.0459 |
417
+ | 2.2125 | 34500 | 0.0508 |
418
+ | 2.2446 | 35000 | 0.0508 |
419
+ | 2.2767 | 35500 | 0.0518 |
420
+ | 2.3087 | 36000 | 0.0552 |
421
+ | 2.3408 | 36500 | 0.0491 |
422
+ | 2.3729 | 37000 | 0.0575 |
423
+ | 2.4049 | 37500 | 0.0558 |
424
+ | 2.4370 | 38000 | 0.0475 |
425
+ | 2.4691 | 38500 | 0.0486 |
426
+ | 2.5011 | 39000 | 0.0536 |
427
+ | 2.5332 | 39500 | 0.0559 |
428
+ | 2.5653 | 40000 | 0.0524 |
429
+ | 2.5973 | 40500 | 0.0496 |
430
+ | 2.6294 | 41000 | 0.0486 |
431
+ | 2.6615 | 41500 | 0.0526 |
432
+ | 2.6935 | 42000 | 0.0443 |
433
+ | 2.7256 | 42500 | 0.058 |
434
+ | 2.7576 | 43000 | 0.0543 |
435
+ | 2.7897 | 43500 | 0.0527 |
436
+ | 2.8218 | 44000 | 0.0528 |
437
+ | 2.8538 | 44500 | 0.0573 |
438
+ | 2.8859 | 45000 | 0.0628 |
439
+ | 2.9180 | 45500 | 0.0443 |
440
+ | 2.9500 | 46000 | 0.0531 |
441
+ | 2.9821 | 46500 | 0.0554 |
442
+ | 3.0 | 46779 | - |
443
+ | 3.0142 | 47000 | 0.0346 |
444
+ | 3.0462 | 47500 | 0.0288 |
445
+ | 3.0783 | 48000 | 0.0219 |
446
+ | 3.1104 | 48500 | 0.0259 |
447
+ | 3.1424 | 49000 | 0.0237 |
448
+ | 3.1745 | 49500 | 0.0307 |
449
+ | 3.2066 | 50000 | 0.0234 |
450
+ | 3.2386 | 50500 | 0.0312 |
451
+ | 3.2707 | 51000 | 0.0297 |
452
+ | 3.3028 | 51500 | 0.0299 |
453
+ | 3.3348 | 52000 | 0.0326 |
454
+ | 3.3669 | 52500 | 0.0266 |
455
+ | 3.3990 | 53000 | 0.0296 |
456
+ | 3.4310 | 53500 | 0.0289 |
457
+ | 3.4631 | 54000 | 0.0216 |
458
+ | 3.4952 | 54500 | 0.0289 |
459
+ | 3.5272 | 55000 | 0.033 |
460
+ | 3.5593 | 55500 | 0.0248 |
461
+ | 3.5914 | 56000 | 0.0246 |
462
+ | 3.6234 | 56500 | 0.0287 |
463
+ | 3.6555 | 57000 | 0.0267 |
464
+ | 3.6876 | 57500 | 0.0285 |
465
+ | 3.7196 | 58000 | 0.0288 |
466
+ | 3.7517 | 58500 | 0.0283 |
467
+ | 3.7837 | 59000 | 0.0283 |
468
+ | 3.8158 | 59500 | 0.029 |
469
+ | 3.8479 | 60000 | 0.0327 |
470
+ | 3.8799 | 60500 | 0.0239 |
471
+ | 3.9120 | 61000 | 0.0356 |
472
+ | 3.9441 | 61500 | 0.0323 |
473
+ | 3.9761 | 62000 | 0.0213 |
474
+ | 4.0 | 62372 | - |
475
+ | 4.0082 | 62500 | 0.0275 |
476
+ | 4.0403 | 63000 | 0.0125 |
477
+ | 4.0723 | 63500 | 0.0183 |
478
+ | 4.1044 | 64000 | 0.0138 |
479
+ | 4.1365 | 64500 | 0.0174 |
480
+ | 4.1685 | 65000 | 0.0088 |
481
+ | 4.2006 | 65500 | 0.0126 |
482
+ | 4.2327 | 66000 | 0.0134 |
483
+ | 4.2647 | 66500 | 0.0099 |
484
+ | 4.2968 | 67000 | 0.0188 |
485
+ | 4.3289 | 67500 | 0.0112 |
486
+ | 4.3609 | 68000 | 0.0156 |
487
+ | 4.3930 | 68500 | 0.0175 |
488
+ | 4.4251 | 69000 | 0.0128 |
489
+ | 4.4571 | 69500 | 0.0154 |
490
+ | 4.4892 | 70000 | 0.0127 |
491
+ | 4.5213 | 70500 | 0.0131 |
492
+ | 4.5533 | 71000 | 0.017 |
493
+ | 4.5854 | 71500 | 0.0116 |
494
+ | 4.6175 | 72000 | 0.0137 |
495
+ | 4.6495 | 72500 | 0.0156 |
496
+ | 4.6816 | 73000 | 0.0155 |
497
+ | 4.7137 | 73500 | 0.0078 |
498
+ | 4.7457 | 74000 | 0.0152 |
499
+ | 4.7778 | 74500 | 0.0089 |
500
+ | 4.8099 | 75000 | 0.0116 |
501
+ | 4.8419 | 75500 | 0.0144 |
502
+ | 4.8740 | 76000 | 0.0112 |
503
+ | 4.9060 | 76500 | 0.0108 |
504
+ | 4.9381 | 77000 | 0.0188 |
505
+ | 4.9702 | 77500 | 0.0109 |
506
+ | 5.0 | 77965 | - |
507
+
508
+ </details>
509
+
510
+ ### Framework Versions
511
+ - Python: 3.11.11
512
+ - Sentence Transformers: 3.4.1
513
+ - Transformers: 4.49.0
514
+ - PyTorch: 2.5.1+cu124
515
+ - Accelerate: 1.3.0
516
+ - Datasets: 3.3.2
517
+ - Tokenizers: 0.21.0
518
+
519
+ ## Citation
520
+
521
+ ### BibTeX
522
+
523
+ #### Sentence Transformers
524
+ ```bibtex
525
+ @inproceedings{reimers-2019-sentence-bert,
526
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
527
+ author = "Reimers, Nils and Gurevych, Iryna",
528
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
529
+ month = "11",
530
+ year = "2019",
531
+ publisher = "Association for Computational Linguistics",
532
+ url = "https://arxiv.org/abs/1908.10084",
533
+ }
534
+ ```
535
+
536
+ <!--
537
+ ## Glossary
538
+
539
+ *Clearly define terms in order to be accessible across audiences.*
540
+ -->
541
+
542
+ <!--
543
+ ## Model Card Authors
544
+
545
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
546
+ -->
547
+
548
+ <!--
549
+ ## Model Card Contact
550
+
551
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
552
+ -->
config.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nomic-ai/nomic-embed-text-v2-moe",
3
+ "activation_function": "gelu",
4
+ "add_pooling_layer": false,
5
+ "architectures": [
6
+ "NomicBertModel"
7
+ ],
8
+ "attn_pdrop": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig",
11
+ "AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel",
12
+ "AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining",
13
+ "AutoModelForMultipleChoice": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForMultipleChoice",
14
+ "AutoModelForQuestionAnswering": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForQuestionAnswering",
15
+ "AutoModelForSequenceClassification": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForSequenceClassification",
16
+ "AutoModelForTokenClassification": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForTokenClassification"
17
+ },
18
+ "bos_token_id": null,
19
+ "causal": false,
20
+ "dense_seq_output": true,
21
+ "embd_pdrop": 0.1,
22
+ "eos_token_id": null,
23
+ "expert_choice_router": false,
24
+ "ffn_div": 1,
25
+ "fused_bias_fc": true,
26
+ "fused_dropout_add_ln": true,
27
+ "initializer_range": 0.02,
28
+ "layer_norm_epsilon": 1e-05,
29
+ "max_trained_positions": 2048,
30
+ "mlp_fc1_bias": true,
31
+ "mlp_fc2_bias": true,
32
+ "model_type": "nomic_bert",
33
+ "moe_every_n_layers": 2,
34
+ "moe_impl": "megablocks",
35
+ "moe_normalize_expert_weights": false,
36
+ "moe_resid_pdrop": 0.0,
37
+ "moe_top_k": 2,
38
+ "n_embd": 768,
39
+ "n_head": 12,
40
+ "n_inner": 3072,
41
+ "n_layer": 12,
42
+ "n_positions": 2048,
43
+ "num_experts": 8,
44
+ "num_shared_experts": 0,
45
+ "pad_token_id": 1,
46
+ "pad_vocab_size_multiple": 64,
47
+ "parallel_block": false,
48
+ "parallel_block_tied_norm": false,
49
+ "prenorm": false,
50
+ "qkv_proj_bias": true,
51
+ "reorder_and_upcast_attn": false,
52
+ "resid_pdrop": 0.0,
53
+ "rotary_emb_base": 10000,
54
+ "rotary_emb_fraction": 1.0,
55
+ "rotary_emb_interleaved": false,
56
+ "rotary_emb_scale_base": null,
57
+ "rotary_scaling_factor": null,
58
+ "router_aux_loss_coef": 0.1,
59
+ "scale_attn_by_inverse_layer_idx": false,
60
+ "scale_attn_weights": true,
61
+ "summary_activation": null,
62
+ "summary_first_dropout": 0.1,
63
+ "summary_proj_to_labels": true,
64
+ "summary_type": "cls_index",
65
+ "summary_use_proj": true,
66
+ "torch_dtype": "float32",
67
+ "transformers_version": "4.49.0",
68
+ "type_vocab_size": 1,
69
+ "use_cache": true,
70
+ "use_flash_attn": true,
71
+ "use_rms_norm": null,
72
+ "use_xentropy": true,
73
+ "vocab_size": 250048
74
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:149b21268186cf9c3033e99c44094a5195e553ab902e69a215ed0bb3dd150d84
3
+ size 1901187232
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
3
+ size 17082988
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }