Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +552 -0
- config.json +74 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:498970
|
8 |
+
- loss:BPRLoss
|
9 |
+
base_model: nomic-ai/nomic-embed-text-v2-moe
|
10 |
+
widget:
|
11 |
+
- source_sentence: what was the start treaty 2010
|
12 |
+
sentences:
|
13 |
+
- "Strategic Offensive Reductions: The Treaty between the United States of America\
|
14 |
+
\ and the Russian Federation on Measures for the Further Reduction and Limitation\
|
15 |
+
\ of Strategic Offensive Arms, also known as the New START Treaty, entered into\
|
16 |
+
\ force on February 5, 2011.nder the Treaty, the United States and Russia must\
|
17 |
+
\ meet the Treatyâ\x80\x99s central limits on strategic arms by February 5, 2018;\
|
18 |
+
\ seven years from the date the Treaty entered into force. Each Party has the\
|
19 |
+
\ flexibility to determine for itself the structure of its strategic forces within\
|
20 |
+
\ the aggregate limits of the Treaty."
|
21 |
+
- 'Nuclear pharmacy practice: hour-for-hour credit in a licensed nuclear pharmacy
|
22 |
+
or health care facility approved by state or federal agencies to handle radioactive
|
23 |
+
materials, to a maximum of 4,000 hours.'
|
24 |
+
- 'Signed: 18 June 1979. Entered into Force: Never entered into force; superseded
|
25 |
+
by the START I Treaty in 1991. Duration: Until 31 December 1985; unless the Treaty
|
26 |
+
is replaced earlier by an agreement further limiting strategic offensive arms.
|
27 |
+
Parties: Soviet Union and United States.'
|
28 |
+
- source_sentence: is pez a word
|
29 |
+
sentences:
|
30 |
+
- From dispensers to candy, there's a PEZ for anyone and everyone. Look for these
|
31 |
+
PEZ products at your local retailer.rom dispensers to candy, there's a PEZ for
|
32 |
+
anyone and everyone. Look for these PEZ products at your local retailer.
|
33 |
+
- PEZ was first introduced in 1927 in Vienna, Austria as a breath mint for adults!
|
34 |
+
The word PEZ was created using the first, middle and last letter in the German
|
35 |
+
word for peppermint P feff E rmin Z.
|
36 |
+
- Boonville is a city in Boon Township, Warrick County, Indiana, United States.
|
37 |
+
The population was 6,246 at the 2010 census.The city is the county seat of Warrick
|
38 |
+
County.oonville was founded in 1818 and named for Jesse Boon, father of Ratliff
|
39 |
+
Boon. A post office has been in operation at Boonville since 1820. Boonville was
|
40 |
+
incorporated in 1858.
|
41 |
+
- source_sentence: us budget deficit by president
|
42 |
+
sentences:
|
43 |
+
- "By 2022, the government will once again be running trillion-dollar deficits,\
|
44 |
+
\ the report said. â\x80\x9CWe still have a lot of work to do,â\x80\x9D said House\
|
45 |
+
\ Budget Committee Chairman Paul Ryan. Lawmakers can take some credit for the\
|
46 |
+
\ short-term improvement in the budget outlook, the report showed, though the\
|
47 |
+
\ strengthening economy helps as well."
|
48 |
+
- However, when they are 3 to 4 months old, they become susceptible to the disease,
|
49 |
+
so all calves should be vaccinated for blackleg by 4 months of age. A revaccination
|
50 |
+
3 to 6 weeks later according to product label directions is necessary to provide
|
51 |
+
the best protec-tion.lackleg seldom affects cattle older than 2 years of age,
|
52 |
+
most likely due to immunity induced by vaccines or natural exposure. However,
|
53 |
+
sporadic cases do occur in cattle older than 2 years and are often associated
|
54 |
+
with the reuse of needles for multiple injections.
|
55 |
+
- According to this method, Barack Obama's budget is projected to run a deficit
|
56 |
+
of $7.3 trillion over his eight years, making him the president with the largest
|
57 |
+
budget deficit. George W. Bush is second, with a deficit of $3.29 trillion over
|
58 |
+
his eight years.
|
59 |
+
- source_sentence: what is a sixth sense
|
60 |
+
sentences:
|
61 |
+
- 1 Extrasensory perception (ESP), commonly called the sixth sense. 2 Equilibrioception
|
62 |
+
(sense of balance) and proprioception (sense of body position), commonly accepted
|
63 |
+
physiological senses in addition to the usually considered five senses.
|
64 |
+
- 'Glaze or glazing may refer to: 1 Glaze (metallurgy), a layer of compacted sintered
|
65 |
+
oxide formed on some metals. 2 Glaze (cooking technique), a coating of a glossy,
|
66 |
+
often sweet, mixture applied to food. Glaze (painting technique), a layer of
|
67 |
+
paint, thinned with a medium, so as to become somewhat transparent.'
|
68 |
+
- Definition of Proprioception. The term proprioception is used to describe the
|
69 |
+
sensory information that contributes to the sense of position of self and movement.
|
70 |
+
Sir Charles Bell named the sixth sense as the sense of the positions and actions
|
71 |
+
of the limbs (McCloskey 1978).eceptors of Proprioception. It is well recognized
|
72 |
+
that joint movements activate receptors in the joint, skin and muscle. In turn,
|
73 |
+
any of these receptors may play a role in the perception and control of limb movement
|
74 |
+
and joint angle.
|
75 |
+
- source_sentence: what services are offered by adult day care
|
76 |
+
sentences:
|
77 |
+
- The Met Life Market survey of 2008 on adult day services states the average cost
|
78 |
+
for adult day care services is $64 per day. There has been an increase of 5% in
|
79 |
+
these services in the past year.
|
80 |
+
- Consumer Guide to Long Term Care. Adult Day Care. Adult day care is a planned
|
81 |
+
program offered in a group setting that provides services that improve or maintain
|
82 |
+
health or functioning, and social activities for seniors and persons with disabilities.
|
83 |
+
- As nouns the difference between tackle and guard is that tackle is (nautical)
|
84 |
+
a system of ropes and blocks used to increase the force applied to the free end
|
85 |
+
of the rope while guard is a person who, or thing that, protects or watches over
|
86 |
+
something. As verbs the difference between tackle and guard
|
87 |
+
pipeline_tag: sentence-similarity
|
88 |
+
library_name: sentence-transformers
|
89 |
+
---
|
90 |
+
|
91 |
+
# SentenceTransformer based on nomic-ai/nomic-embed-text-v2-moe
|
92 |
+
|
93 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
94 |
+
|
95 |
+
## Model Details
|
96 |
+
|
97 |
+
### Model Description
|
98 |
+
- **Model Type:** Sentence Transformer
|
99 |
+
- **Base model:** [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) <!-- at revision f6a8873b415144a69ffc529ec1e234d1e00ee765 -->
|
100 |
+
- **Maximum Sequence Length:** 8192 tokens
|
101 |
+
- **Output Dimensionality:** 768 dimensions
|
102 |
+
- **Similarity Function:** Cosine Similarity
|
103 |
+
<!-- - **Training Dataset:** Unknown -->
|
104 |
+
<!-- - **Language:** Unknown -->
|
105 |
+
<!-- - **License:** Unknown -->
|
106 |
+
|
107 |
+
### Model Sources
|
108 |
+
|
109 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
110 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
111 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
112 |
+
|
113 |
+
### Full Model Architecture
|
114 |
+
|
115 |
+
```
|
116 |
+
SentenceTransformer(
|
117 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
|
118 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
119 |
+
)
|
120 |
+
```
|
121 |
+
|
122 |
+
## Usage
|
123 |
+
|
124 |
+
### Direct Usage (Sentence Transformers)
|
125 |
+
|
126 |
+
First install the Sentence Transformers library:
|
127 |
+
|
128 |
+
```bash
|
129 |
+
pip install -U sentence-transformers
|
130 |
+
```
|
131 |
+
|
132 |
+
Then you can load this model and run inference.
|
133 |
+
```python
|
134 |
+
from sentence_transformers import SentenceTransformer
|
135 |
+
|
136 |
+
# Download from the 🤗 Hub
|
137 |
+
model = SentenceTransformer("BlackBeenie/nomic-embed-text-v2-moe-msmarco-bpr")
|
138 |
+
# Run inference
|
139 |
+
sentences = [
|
140 |
+
'what services are offered by adult day care',
|
141 |
+
'Consumer Guide to Long Term Care. Adult Day Care. Adult day care is a planned program offered in a group setting that provides services that improve or maintain health or functioning, and social activities for seniors and persons with disabilities.',
|
142 |
+
'The Met Life Market survey of 2008 on adult day services states the average cost for adult day care services is $64 per day. There has been an increase of 5% in these services in the past year.',
|
143 |
+
]
|
144 |
+
embeddings = model.encode(sentences)
|
145 |
+
print(embeddings.shape)
|
146 |
+
# [3, 768]
|
147 |
+
|
148 |
+
# Get the similarity scores for the embeddings
|
149 |
+
similarities = model.similarity(embeddings, embeddings)
|
150 |
+
print(similarities.shape)
|
151 |
+
# [3, 3]
|
152 |
+
```
|
153 |
+
|
154 |
+
<!--
|
155 |
+
### Direct Usage (Transformers)
|
156 |
+
|
157 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
158 |
+
|
159 |
+
</details>
|
160 |
+
-->
|
161 |
+
|
162 |
+
<!--
|
163 |
+
### Downstream Usage (Sentence Transformers)
|
164 |
+
|
165 |
+
You can finetune this model on your own dataset.
|
166 |
+
|
167 |
+
<details><summary>Click to expand</summary>
|
168 |
+
|
169 |
+
</details>
|
170 |
+
-->
|
171 |
+
|
172 |
+
<!--
|
173 |
+
### Out-of-Scope Use
|
174 |
+
|
175 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
176 |
+
-->
|
177 |
+
|
178 |
+
<!--
|
179 |
+
## Bias, Risks and Limitations
|
180 |
+
|
181 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
182 |
+
-->
|
183 |
+
|
184 |
+
<!--
|
185 |
+
### Recommendations
|
186 |
+
|
187 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
188 |
+
-->
|
189 |
+
|
190 |
+
## Training Details
|
191 |
+
|
192 |
+
### Training Dataset
|
193 |
+
|
194 |
+
#### Unnamed Dataset
|
195 |
+
|
196 |
+
* Size: 498,970 training samples
|
197 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
198 |
+
* Approximate statistics based on the first 1000 samples:
|
199 |
+
| | sentence_0 | sentence_1 | sentence_2 |
|
200 |
+
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
201 |
+
| type | string | string | string |
|
202 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 9.75 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 89.23 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 86.66 tokens</li><li>max: 280 tokens</li></ul> |
|
203 |
+
* Samples:
|
204 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
205 |
+
|:------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
206 |
+
| <code>what the history of bluetooth</code> | <code>When asked about the name Bluetooth, I explained that Bluetooth was borrowed from the 10th century, second King of Denmark, King Harald Bluetooth; who was famous for uniting Scandinavia just as we intended to unite the PC and cellular industries with a short-range wireless link.</code> | <code>Technology: 1 How secure is a Bluetooth network? 2 What is Frequency-Hopping Spread Spectrum (FHSS)? 3 Will other RF (Radio Frequency) devices interfere with Bluetooth Devices? 4 Will Bluetooth and Wireless LAN (WLAN) interfere with each other? 5 What is the data throughput speed of a Bluetooth connection? 6 What is the range of Bluetooth 7 ... What kind of ...</code> |
|
207 |
+
| <code>how thin can a concrete slab be</code> | <code>Another issue that must be addressed is the added weight of the thin-slab. Poured gypsum thin-slabs typically add 13 to 15 pounds per square foot to the dead loading of a floor structure. Standard weight concrete thin slabs add about 18 pounds per square foot (at 1.5 thickness).</code> | <code>Find the Area in square feet: We will use a concrete slab pour for our example. Letâs say that we need to figure out the yardage for a slab that will be 15 feet long by 10 feet wide and 4 inches thick. First we find the area by multiplying the length times the width. 1 15 feet X 10 feet = 150 square feet.</code> |
|
208 |
+
| <code>how long to cook eggs to hard boil</code> | <code>This method works best if the eggs are in a single layer, but you can double them up as well, you'll just need to add more time to the steaming time. 3 Set your timer for 6 minutes for soft boiled, 10 minutes for hard boiled with a still translucent and bright yolk, or 12-15 minutes for cooked-through hard boiled.</code> | <code>Hard-Steamed Eggs. Fill a pot that can comfortably hold your steamer with the lid on with 1 to 2 inches of water. Bring to a rolling boil, 212 degrees Fahrenheit. Place your eggs in a metal steamer, and lower the basket into the pot. The eggs should sit above the boiling water. Cover and cook for 12 minutes. Hard-steamed eggs, like hard-boiled eggs, are eggs that are cooked until the egg yolk is fully set and has turned to a chalky texture.</code> |
|
209 |
+
* Loss: <code>beir.losses.bpr_loss.BPRLoss</code>
|
210 |
+
|
211 |
+
### Training Hyperparameters
|
212 |
+
#### Non-Default Hyperparameters
|
213 |
+
|
214 |
+
- `eval_strategy`: steps
|
215 |
+
- `per_device_train_batch_size`: 32
|
216 |
+
- `per_device_eval_batch_size`: 32
|
217 |
+
- `num_train_epochs`: 5
|
218 |
+
- `fp16`: True
|
219 |
+
- `multi_dataset_batch_sampler`: round_robin
|
220 |
+
|
221 |
+
#### All Hyperparameters
|
222 |
+
<details><summary>Click to expand</summary>
|
223 |
+
|
224 |
+
- `overwrite_output_dir`: False
|
225 |
+
- `do_predict`: False
|
226 |
+
- `eval_strategy`: steps
|
227 |
+
- `prediction_loss_only`: True
|
228 |
+
- `per_device_train_batch_size`: 32
|
229 |
+
- `per_device_eval_batch_size`: 32
|
230 |
+
- `per_gpu_train_batch_size`: None
|
231 |
+
- `per_gpu_eval_batch_size`: None
|
232 |
+
- `gradient_accumulation_steps`: 1
|
233 |
+
- `eval_accumulation_steps`: None
|
234 |
+
- `torch_empty_cache_steps`: None
|
235 |
+
- `learning_rate`: 5e-05
|
236 |
+
- `weight_decay`: 0.0
|
237 |
+
- `adam_beta1`: 0.9
|
238 |
+
- `adam_beta2`: 0.999
|
239 |
+
- `adam_epsilon`: 1e-08
|
240 |
+
- `max_grad_norm`: 1
|
241 |
+
- `num_train_epochs`: 5
|
242 |
+
- `max_steps`: -1
|
243 |
+
- `lr_scheduler_type`: linear
|
244 |
+
- `lr_scheduler_kwargs`: {}
|
245 |
+
- `warmup_ratio`: 0.0
|
246 |
+
- `warmup_steps`: 0
|
247 |
+
- `log_level`: passive
|
248 |
+
- `log_level_replica`: warning
|
249 |
+
- `log_on_each_node`: True
|
250 |
+
- `logging_nan_inf_filter`: True
|
251 |
+
- `save_safetensors`: True
|
252 |
+
- `save_on_each_node`: False
|
253 |
+
- `save_only_model`: False
|
254 |
+
- `restore_callback_states_from_checkpoint`: False
|
255 |
+
- `no_cuda`: False
|
256 |
+
- `use_cpu`: False
|
257 |
+
- `use_mps_device`: False
|
258 |
+
- `seed`: 42
|
259 |
+
- `data_seed`: None
|
260 |
+
- `jit_mode_eval`: False
|
261 |
+
- `use_ipex`: False
|
262 |
+
- `bf16`: False
|
263 |
+
- `fp16`: True
|
264 |
+
- `fp16_opt_level`: O1
|
265 |
+
- `half_precision_backend`: auto
|
266 |
+
- `bf16_full_eval`: False
|
267 |
+
- `fp16_full_eval`: False
|
268 |
+
- `tf32`: None
|
269 |
+
- `local_rank`: 0
|
270 |
+
- `ddp_backend`: None
|
271 |
+
- `tpu_num_cores`: None
|
272 |
+
- `tpu_metrics_debug`: False
|
273 |
+
- `debug`: []
|
274 |
+
- `dataloader_drop_last`: False
|
275 |
+
- `dataloader_num_workers`: 0
|
276 |
+
- `dataloader_prefetch_factor`: None
|
277 |
+
- `past_index`: -1
|
278 |
+
- `disable_tqdm`: False
|
279 |
+
- `remove_unused_columns`: True
|
280 |
+
- `label_names`: None
|
281 |
+
- `load_best_model_at_end`: False
|
282 |
+
- `ignore_data_skip`: False
|
283 |
+
- `fsdp`: []
|
284 |
+
- `fsdp_min_num_params`: 0
|
285 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
286 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
287 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
288 |
+
- `deepspeed`: None
|
289 |
+
- `label_smoothing_factor`: 0.0
|
290 |
+
- `optim`: adamw_torch
|
291 |
+
- `optim_args`: None
|
292 |
+
- `adafactor`: False
|
293 |
+
- `group_by_length`: False
|
294 |
+
- `length_column_name`: length
|
295 |
+
- `ddp_find_unused_parameters`: None
|
296 |
+
- `ddp_bucket_cap_mb`: None
|
297 |
+
- `ddp_broadcast_buffers`: False
|
298 |
+
- `dataloader_pin_memory`: True
|
299 |
+
- `dataloader_persistent_workers`: False
|
300 |
+
- `skip_memory_metrics`: True
|
301 |
+
- `use_legacy_prediction_loop`: False
|
302 |
+
- `push_to_hub`: False
|
303 |
+
- `resume_from_checkpoint`: None
|
304 |
+
- `hub_model_id`: None
|
305 |
+
- `hub_strategy`: every_save
|
306 |
+
- `hub_private_repo`: None
|
307 |
+
- `hub_always_push`: False
|
308 |
+
- `gradient_checkpointing`: False
|
309 |
+
- `gradient_checkpointing_kwargs`: None
|
310 |
+
- `include_inputs_for_metrics`: False
|
311 |
+
- `include_for_metrics`: []
|
312 |
+
- `eval_do_concat_batches`: True
|
313 |
+
- `fp16_backend`: auto
|
314 |
+
- `push_to_hub_model_id`: None
|
315 |
+
- `push_to_hub_organization`: None
|
316 |
+
- `mp_parameters`:
|
317 |
+
- `auto_find_batch_size`: False
|
318 |
+
- `full_determinism`: False
|
319 |
+
- `torchdynamo`: None
|
320 |
+
- `ray_scope`: last
|
321 |
+
- `ddp_timeout`: 1800
|
322 |
+
- `torch_compile`: False
|
323 |
+
- `torch_compile_backend`: None
|
324 |
+
- `torch_compile_mode`: None
|
325 |
+
- `dispatch_batches`: None
|
326 |
+
- `split_batches`: None
|
327 |
+
- `include_tokens_per_second`: False
|
328 |
+
- `include_num_input_tokens_seen`: False
|
329 |
+
- `neftune_noise_alpha`: None
|
330 |
+
- `optim_target_modules`: None
|
331 |
+
- `batch_eval_metrics`: False
|
332 |
+
- `eval_on_start`: False
|
333 |
+
- `use_liger_kernel`: False
|
334 |
+
- `eval_use_gather_object`: False
|
335 |
+
- `average_tokens_across_devices`: False
|
336 |
+
- `prompts`: None
|
337 |
+
- `batch_sampler`: batch_sampler
|
338 |
+
- `multi_dataset_batch_sampler`: round_robin
|
339 |
+
|
340 |
+
</details>
|
341 |
+
|
342 |
+
### Training Logs
|
343 |
+
<details><summary>Click to expand</summary>
|
344 |
+
|
345 |
+
| Epoch | Step | Training Loss |
|
346 |
+
|:------:|:-----:|:-------------:|
|
347 |
+
| 0.0321 | 500 | 0.3396 |
|
348 |
+
| 0.0641 | 1000 | 0.2094 |
|
349 |
+
| 0.0962 | 1500 | 0.21 |
|
350 |
+
| 0.1283 | 2000 | 0.1955 |
|
351 |
+
| 0.1603 | 2500 | 0.1989 |
|
352 |
+
| 0.1924 | 3000 | 0.1851 |
|
353 |
+
| 0.2245 | 3500 | 0.1839 |
|
354 |
+
| 0.2565 | 4000 | 0.1859 |
|
355 |
+
| 0.2886 | 4500 | 0.1892 |
|
356 |
+
| 0.3207 | 5000 | 0.1865 |
|
357 |
+
| 0.3527 | 5500 | 0.1773 |
|
358 |
+
| 0.3848 | 6000 | 0.1796 |
|
359 |
+
| 0.4169 | 6500 | 0.1929 |
|
360 |
+
| 0.4489 | 7000 | 0.1829 |
|
361 |
+
| 0.4810 | 7500 | 0.172 |
|
362 |
+
| 0.5131 | 8000 | 0.1792 |
|
363 |
+
| 0.5451 | 8500 | 0.1747 |
|
364 |
+
| 0.5772 | 9000 | 0.1802 |
|
365 |
+
| 0.6092 | 9500 | 0.1856 |
|
366 |
+
| 0.6413 | 10000 | 0.1751 |
|
367 |
+
| 0.6734 | 10500 | 0.173 |
|
368 |
+
| 0.7054 | 11000 | 0.1774 |
|
369 |
+
| 0.7375 | 11500 | 0.1722 |
|
370 |
+
| 0.7696 | 12000 | 0.1825 |
|
371 |
+
| 0.8016 | 12500 | 0.1714 |
|
372 |
+
| 0.8337 | 13000 | 0.1732 |
|
373 |
+
| 0.8658 | 13500 | 0.167 |
|
374 |
+
| 0.8978 | 14000 | 0.1792 |
|
375 |
+
| 0.9299 | 14500 | 0.1697 |
|
376 |
+
| 0.9620 | 15000 | 0.1682 |
|
377 |
+
| 0.9940 | 15500 | 0.1764 |
|
378 |
+
| 1.0 | 15593 | - |
|
379 |
+
| 1.0261 | 16000 | 0.0875 |
|
380 |
+
| 1.0582 | 16500 | 0.0798 |
|
381 |
+
| 1.0902 | 17000 | 0.0764 |
|
382 |
+
| 1.1223 | 17500 | 0.0783 |
|
383 |
+
| 1.1544 | 18000 | 0.0759 |
|
384 |
+
| 1.1864 | 18500 | 0.0834 |
|
385 |
+
| 1.2185 | 19000 | 0.082 |
|
386 |
+
| 1.2506 | 19500 | 0.0827 |
|
387 |
+
| 1.2826 | 20000 | 0.0876 |
|
388 |
+
| 1.3147 | 20500 | 0.0819 |
|
389 |
+
| 1.3468 | 21000 | 0.0841 |
|
390 |
+
| 1.3788 | 21500 | 0.0815 |
|
391 |
+
| 1.4109 | 22000 | 0.0819 |
|
392 |
+
| 1.4430 | 22500 | 0.0883 |
|
393 |
+
| 1.4750 | 23000 | 0.0826 |
|
394 |
+
| 1.5071 | 23500 | 0.0837 |
|
395 |
+
| 1.5392 | 24000 | 0.086 |
|
396 |
+
| 1.5712 | 24500 | 0.0806 |
|
397 |
+
| 1.6033 | 25000 | 0.0918 |
|
398 |
+
| 1.6353 | 25500 | 0.0885 |
|
399 |
+
| 1.6674 | 26000 | 0.0885 |
|
400 |
+
| 1.6995 | 26500 | 0.088 |
|
401 |
+
| 1.7315 | 27000 | 0.0843 |
|
402 |
+
| 1.7636 | 27500 | 0.0915 |
|
403 |
+
| 1.7957 | 28000 | 0.0843 |
|
404 |
+
| 1.8277 | 28500 | 0.0868 |
|
405 |
+
| 1.8598 | 29000 | 0.0857 |
|
406 |
+
| 1.8919 | 29500 | 0.0931 |
|
407 |
+
| 1.9239 | 30000 | 0.0852 |
|
408 |
+
| 1.9560 | 30500 | 0.0913 |
|
409 |
+
| 1.9881 | 31000 | 0.0857 |
|
410 |
+
| 2.0 | 31186 | - |
|
411 |
+
| 2.0201 | 31500 | 0.0547 |
|
412 |
+
| 2.0522 | 32000 | 0.0459 |
|
413 |
+
| 2.0843 | 32500 | 0.0451 |
|
414 |
+
| 2.1163 | 33000 | 0.0407 |
|
415 |
+
| 2.1484 | 33500 | 0.0469 |
|
416 |
+
| 2.1805 | 34000 | 0.0459 |
|
417 |
+
| 2.2125 | 34500 | 0.0508 |
|
418 |
+
| 2.2446 | 35000 | 0.0508 |
|
419 |
+
| 2.2767 | 35500 | 0.0518 |
|
420 |
+
| 2.3087 | 36000 | 0.0552 |
|
421 |
+
| 2.3408 | 36500 | 0.0491 |
|
422 |
+
| 2.3729 | 37000 | 0.0575 |
|
423 |
+
| 2.4049 | 37500 | 0.0558 |
|
424 |
+
| 2.4370 | 38000 | 0.0475 |
|
425 |
+
| 2.4691 | 38500 | 0.0486 |
|
426 |
+
| 2.5011 | 39000 | 0.0536 |
|
427 |
+
| 2.5332 | 39500 | 0.0559 |
|
428 |
+
| 2.5653 | 40000 | 0.0524 |
|
429 |
+
| 2.5973 | 40500 | 0.0496 |
|
430 |
+
| 2.6294 | 41000 | 0.0486 |
|
431 |
+
| 2.6615 | 41500 | 0.0526 |
|
432 |
+
| 2.6935 | 42000 | 0.0443 |
|
433 |
+
| 2.7256 | 42500 | 0.058 |
|
434 |
+
| 2.7576 | 43000 | 0.0543 |
|
435 |
+
| 2.7897 | 43500 | 0.0527 |
|
436 |
+
| 2.8218 | 44000 | 0.0528 |
|
437 |
+
| 2.8538 | 44500 | 0.0573 |
|
438 |
+
| 2.8859 | 45000 | 0.0628 |
|
439 |
+
| 2.9180 | 45500 | 0.0443 |
|
440 |
+
| 2.9500 | 46000 | 0.0531 |
|
441 |
+
| 2.9821 | 46500 | 0.0554 |
|
442 |
+
| 3.0 | 46779 | - |
|
443 |
+
| 3.0142 | 47000 | 0.0346 |
|
444 |
+
| 3.0462 | 47500 | 0.0288 |
|
445 |
+
| 3.0783 | 48000 | 0.0219 |
|
446 |
+
| 3.1104 | 48500 | 0.0259 |
|
447 |
+
| 3.1424 | 49000 | 0.0237 |
|
448 |
+
| 3.1745 | 49500 | 0.0307 |
|
449 |
+
| 3.2066 | 50000 | 0.0234 |
|
450 |
+
| 3.2386 | 50500 | 0.0312 |
|
451 |
+
| 3.2707 | 51000 | 0.0297 |
|
452 |
+
| 3.3028 | 51500 | 0.0299 |
|
453 |
+
| 3.3348 | 52000 | 0.0326 |
|
454 |
+
| 3.3669 | 52500 | 0.0266 |
|
455 |
+
| 3.3990 | 53000 | 0.0296 |
|
456 |
+
| 3.4310 | 53500 | 0.0289 |
|
457 |
+
| 3.4631 | 54000 | 0.0216 |
|
458 |
+
| 3.4952 | 54500 | 0.0289 |
|
459 |
+
| 3.5272 | 55000 | 0.033 |
|
460 |
+
| 3.5593 | 55500 | 0.0248 |
|
461 |
+
| 3.5914 | 56000 | 0.0246 |
|
462 |
+
| 3.6234 | 56500 | 0.0287 |
|
463 |
+
| 3.6555 | 57000 | 0.0267 |
|
464 |
+
| 3.6876 | 57500 | 0.0285 |
|
465 |
+
| 3.7196 | 58000 | 0.0288 |
|
466 |
+
| 3.7517 | 58500 | 0.0283 |
|
467 |
+
| 3.7837 | 59000 | 0.0283 |
|
468 |
+
| 3.8158 | 59500 | 0.029 |
|
469 |
+
| 3.8479 | 60000 | 0.0327 |
|
470 |
+
| 3.8799 | 60500 | 0.0239 |
|
471 |
+
| 3.9120 | 61000 | 0.0356 |
|
472 |
+
| 3.9441 | 61500 | 0.0323 |
|
473 |
+
| 3.9761 | 62000 | 0.0213 |
|
474 |
+
| 4.0 | 62372 | - |
|
475 |
+
| 4.0082 | 62500 | 0.0275 |
|
476 |
+
| 4.0403 | 63000 | 0.0125 |
|
477 |
+
| 4.0723 | 63500 | 0.0183 |
|
478 |
+
| 4.1044 | 64000 | 0.0138 |
|
479 |
+
| 4.1365 | 64500 | 0.0174 |
|
480 |
+
| 4.1685 | 65000 | 0.0088 |
|
481 |
+
| 4.2006 | 65500 | 0.0126 |
|
482 |
+
| 4.2327 | 66000 | 0.0134 |
|
483 |
+
| 4.2647 | 66500 | 0.0099 |
|
484 |
+
| 4.2968 | 67000 | 0.0188 |
|
485 |
+
| 4.3289 | 67500 | 0.0112 |
|
486 |
+
| 4.3609 | 68000 | 0.0156 |
|
487 |
+
| 4.3930 | 68500 | 0.0175 |
|
488 |
+
| 4.4251 | 69000 | 0.0128 |
|
489 |
+
| 4.4571 | 69500 | 0.0154 |
|
490 |
+
| 4.4892 | 70000 | 0.0127 |
|
491 |
+
| 4.5213 | 70500 | 0.0131 |
|
492 |
+
| 4.5533 | 71000 | 0.017 |
|
493 |
+
| 4.5854 | 71500 | 0.0116 |
|
494 |
+
| 4.6175 | 72000 | 0.0137 |
|
495 |
+
| 4.6495 | 72500 | 0.0156 |
|
496 |
+
| 4.6816 | 73000 | 0.0155 |
|
497 |
+
| 4.7137 | 73500 | 0.0078 |
|
498 |
+
| 4.7457 | 74000 | 0.0152 |
|
499 |
+
| 4.7778 | 74500 | 0.0089 |
|
500 |
+
| 4.8099 | 75000 | 0.0116 |
|
501 |
+
| 4.8419 | 75500 | 0.0144 |
|
502 |
+
| 4.8740 | 76000 | 0.0112 |
|
503 |
+
| 4.9060 | 76500 | 0.0108 |
|
504 |
+
| 4.9381 | 77000 | 0.0188 |
|
505 |
+
| 4.9702 | 77500 | 0.0109 |
|
506 |
+
| 5.0 | 77965 | - |
|
507 |
+
|
508 |
+
</details>
|
509 |
+
|
510 |
+
### Framework Versions
|
511 |
+
- Python: 3.11.11
|
512 |
+
- Sentence Transformers: 3.4.1
|
513 |
+
- Transformers: 4.49.0
|
514 |
+
- PyTorch: 2.5.1+cu124
|
515 |
+
- Accelerate: 1.3.0
|
516 |
+
- Datasets: 3.3.2
|
517 |
+
- Tokenizers: 0.21.0
|
518 |
+
|
519 |
+
## Citation
|
520 |
+
|
521 |
+
### BibTeX
|
522 |
+
|
523 |
+
#### Sentence Transformers
|
524 |
+
```bibtex
|
525 |
+
@inproceedings{reimers-2019-sentence-bert,
|
526 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
527 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
528 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
529 |
+
month = "11",
|
530 |
+
year = "2019",
|
531 |
+
publisher = "Association for Computational Linguistics",
|
532 |
+
url = "https://arxiv.org/abs/1908.10084",
|
533 |
+
}
|
534 |
+
```
|
535 |
+
|
536 |
+
<!--
|
537 |
+
## Glossary
|
538 |
+
|
539 |
+
*Clearly define terms in order to be accessible across audiences.*
|
540 |
+
-->
|
541 |
+
|
542 |
+
<!--
|
543 |
+
## Model Card Authors
|
544 |
+
|
545 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
546 |
+
-->
|
547 |
+
|
548 |
+
<!--
|
549 |
+
## Model Card Contact
|
550 |
+
|
551 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
552 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nomic-ai/nomic-embed-text-v2-moe",
|
3 |
+
"activation_function": "gelu",
|
4 |
+
"add_pooling_layer": false,
|
5 |
+
"architectures": [
|
6 |
+
"NomicBertModel"
|
7 |
+
],
|
8 |
+
"attn_pdrop": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig",
|
11 |
+
"AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel",
|
12 |
+
"AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining",
|
13 |
+
"AutoModelForMultipleChoice": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForMultipleChoice",
|
14 |
+
"AutoModelForQuestionAnswering": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForQuestionAnswering",
|
15 |
+
"AutoModelForSequenceClassification": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForSequenceClassification",
|
16 |
+
"AutoModelForTokenClassification": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForTokenClassification"
|
17 |
+
},
|
18 |
+
"bos_token_id": null,
|
19 |
+
"causal": false,
|
20 |
+
"dense_seq_output": true,
|
21 |
+
"embd_pdrop": 0.1,
|
22 |
+
"eos_token_id": null,
|
23 |
+
"expert_choice_router": false,
|
24 |
+
"ffn_div": 1,
|
25 |
+
"fused_bias_fc": true,
|
26 |
+
"fused_dropout_add_ln": true,
|
27 |
+
"initializer_range": 0.02,
|
28 |
+
"layer_norm_epsilon": 1e-05,
|
29 |
+
"max_trained_positions": 2048,
|
30 |
+
"mlp_fc1_bias": true,
|
31 |
+
"mlp_fc2_bias": true,
|
32 |
+
"model_type": "nomic_bert",
|
33 |
+
"moe_every_n_layers": 2,
|
34 |
+
"moe_impl": "megablocks",
|
35 |
+
"moe_normalize_expert_weights": false,
|
36 |
+
"moe_resid_pdrop": 0.0,
|
37 |
+
"moe_top_k": 2,
|
38 |
+
"n_embd": 768,
|
39 |
+
"n_head": 12,
|
40 |
+
"n_inner": 3072,
|
41 |
+
"n_layer": 12,
|
42 |
+
"n_positions": 2048,
|
43 |
+
"num_experts": 8,
|
44 |
+
"num_shared_experts": 0,
|
45 |
+
"pad_token_id": 1,
|
46 |
+
"pad_vocab_size_multiple": 64,
|
47 |
+
"parallel_block": false,
|
48 |
+
"parallel_block_tied_norm": false,
|
49 |
+
"prenorm": false,
|
50 |
+
"qkv_proj_bias": true,
|
51 |
+
"reorder_and_upcast_attn": false,
|
52 |
+
"resid_pdrop": 0.0,
|
53 |
+
"rotary_emb_base": 10000,
|
54 |
+
"rotary_emb_fraction": 1.0,
|
55 |
+
"rotary_emb_interleaved": false,
|
56 |
+
"rotary_emb_scale_base": null,
|
57 |
+
"rotary_scaling_factor": null,
|
58 |
+
"router_aux_loss_coef": 0.1,
|
59 |
+
"scale_attn_by_inverse_layer_idx": false,
|
60 |
+
"scale_attn_weights": true,
|
61 |
+
"summary_activation": null,
|
62 |
+
"summary_first_dropout": 0.1,
|
63 |
+
"summary_proj_to_labels": true,
|
64 |
+
"summary_type": "cls_index",
|
65 |
+
"summary_use_proj": true,
|
66 |
+
"torch_dtype": "float32",
|
67 |
+
"transformers_version": "4.49.0",
|
68 |
+
"type_vocab_size": 1,
|
69 |
+
"use_cache": true,
|
70 |
+
"use_flash_attn": true,
|
71 |
+
"use_rms_norm": null,
|
72 |
+
"use_xentropy": true,
|
73 |
+
"vocab_size": 250048
|
74 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:149b21268186cf9c3033e99c44094a5195e553ab902e69a215ed0bb3dd150d84
|
3 |
+
size 1901187232
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
|
3 |
+
size 17082988
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 8192,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|