File size: 2,701 Bytes
93304a4 ba854d9 93304a4 c3f68e2 93304a4 0906b8e 93304a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- ro
language_creators:
- machine-generated
dataset:
- ro_sts
license: apache-2.0
datasets:
- BlackKakapo/RoSTSC
base_model:
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
---
# 🔥 cupidon-small-ro
Here comes cupidon-small-ro — small in name, but ready to play with the big models. Fine-tuned from the powerful sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2, this sentence-transformers model captures Romanian sentence meaning with impressive accuracy.
It’s compact enough to stay efficient, but packs a semantic punch that hits deep. Think of it as the model that proves "small" can still break hearts — especially in semantic textual similarity, search, or clustering. 💔💬
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```bash
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('BlackKakapo/cupidon-small-ro')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BlackKakapo/cupidon-small-ro')
model = AutoModel.from_pretrained('BlackKakapo/cupidon-small-ro')
```
## License
This dataset is licensed under **Apache 2.0**.
## Citation
If you use BlackKakapo/cupidon-mini-ro in your research, please cite this model as follows:
```
@misc{cupidon-small-ro,
title={BlackKakapo/cupidon-small-ro},
author={BlackKakapo},
year={2025},
}
``` |