Blackroot commited on
Commit
fc3879a
·
verified ·
1 Parent(s): 3b8b95b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -2
README.md CHANGED
@@ -3,6 +3,8 @@ license: mit
3
  ---
4
  [![Discord](https://img.shields.io/discord/232596713892872193?logo=discord)](https://discord.gg/2JhHVh7CGu)
5
 
 
 
6
  A semi custom network based on the follow paper [Simpler Diffusion (SiD2)](https://arxiv.org/abs/2410.19324v1)
7
 
8
  This network uses the optimal transport flow matching objective outlined [Flow Matching for Generative Modeling](https://arxiv.org/abs/2210.02747)
@@ -10,8 +12,9 @@ This network uses the optimal transport flow matching objective outlined [Flow M
10
  xATGLU Layers are used instead of linears for entry into the transformer MLP layer [Expanded Gating Ranges
11
  Improve Activation Functions](https://arxiv.org/pdf/2405.20768)
12
 
13
- `python train.py` will train a new image network on the provided dataset. A pretrained model is provided here, step_1799.safetensors. To test, use:
14
- `python test_sample.py step_1799.safetensors`
 
15
 
16
  ![samples](./1.png)
17
  ![samples](./2.png)
 
3
  ---
4
  [![Discord](https://img.shields.io/discord/232596713892872193?logo=discord)](https://discord.gg/2JhHVh7CGu)
5
 
6
+ This is a severely undertrained research network as a POC for the architecture. It was trained on ~700 example images for 2000 epochs reaching a minimal MSE loss of ~0.06. This repo is meant only as a demo of a strong, <100M parameter example model that can achieve strong color balance and achieve low loss on pixel diffusion. The next step is scaling up the data.
7
+
8
  A semi custom network based on the follow paper [Simpler Diffusion (SiD2)](https://arxiv.org/abs/2410.19324v1)
9
 
10
  This network uses the optimal transport flow matching objective outlined [Flow Matching for Generative Modeling](https://arxiv.org/abs/2210.02747)
 
12
  xATGLU Layers are used instead of linears for entry into the transformer MLP layer [Expanded Gating Ranges
13
  Improve Activation Functions](https://arxiv.org/pdf/2405.20768)
14
 
15
+ ```python train.py``` will train a new image network on the provided dataset.
16
+
17
+ ```python test_sample.py step_1799.safetensors``` Where step_1799.safetensors is the desired model to test inference on. This will always generate a sample grid of 16x16 images.
18
 
19
  ![samples](./1.png)
20
  ![samples](./2.png)