Bouquets commited on
Commit
1c59bb5
Β·
verified Β·
1 Parent(s): 69d2361

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -36
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
- base_model: Bouquets/StrikeGPT-R1-Zero-8B
 
3
  language:
4
  - en
5
  - zh
@@ -12,50 +13,123 @@ tags:
12
  - cybersecurity
13
  - llama-cpp
14
  - gguf-my-repo
15
- - llama-cpp
16
- - gguf-my-repo
17
  ---
 
18
 
19
- # Bouquets/StrikeGPT-R1-Zero-8B-Q4_K_M-GGUF
20
- This model was converted to GGUF format from [`Bouquets/StrikeGPT-R1-Zero-8B`](https://huggingface.co/Bouquets/StrikeGPT-R1-Zero-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
21
- Refer to the [original model card](https://huggingface.co/Bouquets/StrikeGPT-R1-Zero-8B) for more details on the model.
22
 
23
- ## Use with llama.cpp
24
- Install llama.cpp through brew (works on Mac and Linux)
25
 
26
- ```bash
27
- brew install llama.cpp
28
 
29
- ```
30
- Invoke the llama.cpp server or the CLI.
 
 
 
 
31
 
32
- ### CLI:
33
- ```bash
34
- llama-cli --hf-repo Bouquets/StrikeGPT-R1-Zero-8B-Q4_K_M-GGUF --hf-file strikegpt-r1-zero-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
35
- ```
 
 
36
 
37
- ### Server:
38
- ```bash
39
- llama-server --hf-repo Bouquets/StrikeGPT-R1-Zero-8B-Q4_K_M-GGUF --hf-file strikegpt-r1-zero-8b-q4_k_m.gguf -c 2048
40
- ```
41
 
42
- Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
 
 
43
 
44
- Step 1: Clone llama.cpp from GitHub.
45
- ```
46
- git clone https://github.com/ggerganov/llama.cpp
47
- ```
 
 
 
48
 
49
- Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
50
- ```
51
- cd llama.cpp && LLAMA_CURL=1 make
52
- ```
 
 
 
 
53
 
54
- Step 3: Run inference through the main binary.
55
- ```
56
- ./llama-cli --hf-repo Bouquets/StrikeGPT-R1-Zero-8B-Q4_K_M-GGUF --hf-file strikegpt-r1-zero-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
57
- ```
58
- or
59
- ```
60
- ./llama-server --hf-repo Bouquets/StrikeGPT-R1-Zero-8B-Q4_K_M-GGUF --hf-file strikegpt-r1-zero-8b-q4_k_m.gguf -c 2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model:
3
+ - huihui-ai/Qwen3-8B-abliterated
4
  language:
5
  - en
6
  - zh
 
13
  - cybersecurity
14
  - llama-cpp
15
  - gguf-my-repo
 
 
16
  ---
17
+ 14/05/2025 Updated English dataset
18
 
19
+ # πŸ€– StrikeGPT-R1-Zero: Cybersecurity Penetration Testing Reasoning Model
 
 
20
 
 
 
21
 
22
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/67c1bfdf3e9af7d134c4189d/T2JpQznw0yoUDZrf2GqX0.png)
 
23
 
24
+ ## πŸš€ Model Introduction
25
+ **StrikeGPT-R1-Zero** is an expert model distilled through black-box methods based on **Qwen3**, with DeepSeek-R1 as its teacher model. Coverage includes:
26
+ πŸ”’ AI Security | πŸ›‘οΈ API Security | πŸ“± APP Security | πŸ•΅οΈ APT | 🚩 CTF
27
+ 🏭 ICS Security | πŸ’» Full Penetration Testing | ☁️ Cloud Security | πŸ“œ Code Auditing
28
+ 🦠 Antivirus Evasion | 🌐 Internal Network Security | πŸ’Ύ Digital Forensics | β‚Ώ Blockchain Security | πŸ•³οΈ Traceback & Countermeasures | 🌍 IoT Security
29
+ 🚨 Emergency Response | πŸš— Vehicle Security | πŸ‘₯ Social Engineering | πŸ’Ό Penetration Testing Interviews
30
 
31
+ ### πŸ‘‰ [Click to Access Interactive Detailed Data Distribution](https://bouquets-ai.github.io/StrikeGPT-R1-Zero/WEB)
32
+ ### 🌟 Key Features
33
+ - 🧩 Optimized with **Chain-of-Thought (CoT) reasoning data** to enhance logical capabilities, significantly improving performance in complex tasks like vulnerability analysis
34
+ - πŸ’ͺ Base model uses Qwen3, making it more suitable for Chinese users compared to Distill-Llama
35
+ - ⚠️ **No ethical restrictions**β€”demonstrates unique performance in specific academic research areas (use in compliance with local laws)
36
+ - ✨ Outperforms local RAG solutions in scenarios like offline cybersecurity competitions, with superior logical reasoning and complex task handling
37
 
38
+ ## πŸ“Š Data Distribution
39
+ ![data](https://github.com/user-attachments/assets/4d19d48d-67bb-4b05-8ce9-2000b6afa12e)
 
 
40
 
41
+ ## πŸ› οΈ Model Deployment
42
+ ### Deploy via Ollama
43
+ `ollama run hf.co/Bouquets/StrikeGPT-R1-Zero-8B-Q4_K_M-GGUF:Q4_K_M`
44
 
45
+ **Or directly call the original model**
46
+ ```python
47
+ from unsloth import FastLanguageModel
48
+ import torch
49
+ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
50
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
51
+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
52
 
53
+ model, tokenizer = FastLanguageModel.from_pretrained(
54
+ model_name = "Bouquets/StrikeGPT-R1-Zero-8B",
55
+ max_seq_length = max_seq_length,
56
+ dtype = dtype,
57
+ load_in_4bit = load_in_4bit,
58
+ # token = "hf_...",
59
+ )
60
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
61
 
62
+ ### Instruction:
63
+ {}
64
+
65
+ ### Input:
66
+ {}
67
+
68
+ ### Response:
69
+ {}"""
70
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
71
+ inputs = tokenizer(
72
+ [
73
+ alpaca_prompt.format(
74
+ "", # instruction
75
+ "Hello, are you developed by OpenAI?", # input
76
+ "", # output - leave this blank for generation!
77
+ )
78
+ ], return_tensors = "pt").to("cuda")
79
+
80
+ from transformers import TextStreamer
81
+ text_streamer = TextStreamer(tokenizer, skip_prompt = True)
82
+ _ = model.generate(input_ids = inputs.input_ids, attention_mask = inputs.attention_mask,
83
+ streamer = text_streamer, max_new_tokens = 4096, pad_token_id = tokenizer.eos_token_id)
84
  ```
85
+ ![image](https://github.com/user-attachments/assets/d8cef659-3c83-4bc9-af1a-78ed6345faf2)
86
+
87
+ *Self-awareness issues may occur after quantizationβ€”please disregard.*
88
+ ![image](https://github.com/user-attachments/assets/3989ea09-d581-49fb-9938-01b93e0beb91)
89
+
90
+ ## πŸ’» Open Source πŸ’»
91
+ 🌟 **Open-Source Model** 🌟
92
+ πŸ€— **HuggingFace**:
93
+ πŸ”— [https://huggingface.co/Bouquets/StrikeGPT-R1-Zero-8B](https://huggingface.co/Bouquets/StrikeGPT-R1-Zero-8B)
94
+
95
+ πŸ“Š **Datasets** (Partial Non-Reasoning Data) πŸ“Š
96
+ πŸ€— **HuggingFace**:
97
+ πŸ”Ή Cybersecurity LLM-CVE Dataset:
98
+ πŸ”— [https://huggingface.co/datasets/Bouquets/Cybersecurity-LLM-CVE](https://huggingface.co/datasets/Bouquets/Cybersecurity-LLM-CVE)
99
+
100
+ πŸ”Ή Red Team LLM English Dataset:
101
+ πŸ”— [https://huggingface.co/datasets/Bouquets/Cybersecurity-Red_team-LLM-en](https://huggingface.co/datasets/Bouquets/Cybersecurity-Red_team-LLM-en)
102
+
103
+ ## 🎯 Core Capabilities Showcase & Comparison (Original model has ethical restrictions; simple comparison with SecGPT-7B model)
104
+ Given the absence of standardized evaluation metrics for cybersecurity penetration testing in large language models, we propose a controlled comparative framework leveraging GPT-4 as an impartial evaluator. The methodology consists of three phases:
105
+ **Controlled Questioning**
106
+ Identical cybersecurity penetration testing questions (e.g., "Explain how to exploit a SQL injection vulnerability in a REST API") are posed to both the distilled strikeGPT model and SecGPT Figure 12.
107
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/67c1bfdf3e9af7d134c4189d/gYY1KKLLNGeQmUi4BgZJ4.png)
108
+ Questions span:
109
+ Technical Depth (e.g., payload construction)
110
+ Attack Methodology (e.g., step-by-step exploitation)
111
+ Mitigation Strategies (e.g., parameterized queries)
112
+ **GPT-4 Evaluation Protocol**
113
+ - Responses from both models are anonymized and evaluated by GPT-4 using criteria:
114
+ - Technical Accuracy (0-5): Alignment with known penetration testing principles (e.g., OWASP guidelines).
115
+ - Logical Coherence (0-5): Consistency in reasoning (e.g., cause-effect relationships in attack chains).
116
+ - Practical Feasibility (0-5): Real-world applicability (e.g., compatibility with tools like Burp Suite).
117
+ - GPT-4 provides detailed justifications for scores
118
+ According to the standards, the evaluation results are finally presented in Figure 13.
119
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/67c1bfdf3e9af7d134c4189d/2ThExwlCX4iU_n-Adh6Fp.png)
120
+
121
+ ## πŸ“ˆ Experimental Data Trends
122
+ Minor gradient explosions observed, but overall stable.
123
+ ![image](https://github.com/user-attachments/assets/a3fa3676-9f07-47ea-9029-ec0d56fdc989)
124
+
125
+ ## πŸ’° Training Costs
126
+ - **DeepSeek-R1 API Calls**: Β₯450 (purchased during discounts; normal price ~Β₯1800)
127
+ - **Server Costs**: Β₯4?0
128
+ - **Digital Resources**: Β₯??
129
+ ![image](https://github.com/user-attachments/assets/8e23b5b6-24d9-47c3-b54f-ffa22ec68a83)
130
+
131
+ ## βš–οΈ Usage Notice
132
+ > This model is strictly for **legal security research** and **educational purposes**. Users must comply with local laws and regulations. Developers are not responsible for misuse.
133
+ > **Note**: By using this model, you agree to this disclaimer.
134
+
135
+ πŸ’‘ **Tip**: The model may exhibit hallucinations or knowledge gaps. Always cross-verify critical scenarios!