File size: 2,209 Bytes
c12022b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: facebook/bart-large
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: bart-large-translation-spa-guc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-translation-spa-guc
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8484
- Bleu: 3.2289
- Gen Len: 18.2771
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 1.5556 | 1.0 | 7668 | 1.2930 | 1.2368 | 18.9444 |
| 1.4604 | 2.0 | 15336 | 1.0780 | 1.9761 | 18.4493 |
| 0.8076 | 3.0 | 23004 | 0.9928 | 2.2387 | 18.297 |
| 1.1913 | 4.0 | 30672 | 0.9398 | 2.6084 | 18.2087 |
| 0.8532 | 5.0 | 38340 | 0.8947 | 2.5809 | 18.2469 |
| 0.6234 | 6.0 | 46008 | 0.8649 | 2.7376 | 18.2842 |
| 0.7989 | 7.0 | 53676 | 0.8535 | 2.8415 | 18.2283 |
| 0.6287 | 8.0 | 61344 | 0.8512 | 2.9061 | 18.1744 |
| 0.7429 | 9.0 | 69012 | 0.8471 | 2.9767 | 18.4115 |
| 0.3585 | 10.0 | 76680 | 0.8442 | 3.1551 | 18.2665 |
| 1.0195 | 11.0 | 84348 | 0.8484 | 3.2289 | 18.2771 |
### Framework versions
- Transformers 4.35.2
- Pytorch 1.13.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0
|