ListConRanker / modeling_listconranker.py
ianma2024's picture
support mteb evaluation and update readme
b05bf4f verified
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
# and associated documentation files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or
# substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
from __future__ import annotations
import torch
from torch import nn
from torch.nn import functional as F
from transformers import (
PreTrainedModel,
BertModel,
AutoTokenizer,
)
import os
from transformers.modeling_outputs import SequenceClassifierOutput
from typing import Union, List, Optional
from collections import defaultdict
import numpy as np
import math
from huggingface_hub import hf_hub_download
from .configuration_listconranker import ListConRankerConfig
class QueryEmbedding(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.query_embedding = nn.Embedding(2, config.list_con_hidden_size)
self.layerNorm = nn.LayerNorm(config.list_con_hidden_size)
def forward(self, x, tags):
query_embeddings = self.query_embedding(tags)
x += query_embeddings
x = self.layerNorm(x)
return x
class ListTransformer(nn.Module):
def __init__(self, num_layer, config) -> None:
super().__init__()
self.config = config
self.list_transformer_layer = nn.TransformerEncoderLayer(
config.list_con_hidden_size,
self.config.num_attention_heads,
batch_first=True,
activation=F.gelu,
norm_first=False,
)
self.list_transformer = nn.TransformerEncoder(
self.list_transformer_layer, num_layer
)
self.relu = nn.ReLU()
self.query_embedding = QueryEmbedding(config)
self.linear_score3 = nn.Linear(
config.list_con_hidden_size * 2, config.list_con_hidden_size
)
self.linear_score2 = nn.Linear(
config.list_con_hidden_size * 2, config.list_con_hidden_size
)
self.linear_score1 = nn.Linear(config.list_con_hidden_size * 2, 1)
def forward(
self, pair_features: torch.Tensor, pair_nums: List[int]
) -> torch.Tensor:
batch_pair_features = pair_features.split(pair_nums)
pair_feature_query_passage_concat_list = []
for i in range(len(batch_pair_features)):
pair_feature_query = (
batch_pair_features[i][0].unsqueeze(0).repeat(pair_nums[i] - 1, 1)
)
pair_feature_passage = batch_pair_features[i][1:]
pair_feature_query_passage_concat_list.append(
torch.cat([pair_feature_query, pair_feature_passage], dim=1)
)
pair_feature_query_passage_concat = torch.cat(
pair_feature_query_passage_concat_list, dim=0
)
batch_pair_features = nn.utils.rnn.pad_sequence(
batch_pair_features, batch_first=True
)
query_embedding_tags = torch.zeros(
batch_pair_features.size(0),
batch_pair_features.size(1),
dtype=torch.long,
device=self.device,
)
query_embedding_tags[:, 0] = 1
batch_pair_features = self.query_embedding(
batch_pair_features, query_embedding_tags
)
mask = self.generate_attention_mask(pair_nums)
query_mask = self.generate_attention_mask_custom(pair_nums)
pair_list_features = self.list_transformer(
batch_pair_features, src_key_padding_mask=mask, mask=query_mask
)
output_pair_list_features = []
output_query_list_features = []
pair_features_after_transformer_list = []
for idx, pair_num in enumerate(pair_nums):
output_pair_list_features.append(pair_list_features[idx, 1:pair_num, :])
output_query_list_features.append(pair_list_features[idx, 0, :])
pair_features_after_transformer_list.append(
pair_list_features[idx, :pair_num, :]
)
pair_features_after_transformer_cat_query_list = []
for idx, pair_num in enumerate(pair_nums):
query_ft = (
output_query_list_features[idx].unsqueeze(0).repeat(pair_num - 1, 1)
)
pair_features_after_transformer_cat_query = torch.cat(
[query_ft, output_pair_list_features[idx]], dim=1
)
pair_features_after_transformer_cat_query_list.append(
pair_features_after_transformer_cat_query
)
pair_features_after_transformer_cat_query = torch.cat(
pair_features_after_transformer_cat_query_list, dim=0
)
pair_feature_query_passage_concat = self.relu(
self.linear_score2(pair_feature_query_passage_concat)
)
pair_features_after_transformer_cat_query = self.relu(
self.linear_score3(pair_features_after_transformer_cat_query)
)
final_ft = torch.cat(
[
pair_feature_query_passage_concat,
pair_features_after_transformer_cat_query,
],
dim=1,
)
logits = self.linear_score1(final_ft).squeeze()
return logits, torch.cat(pair_features_after_transformer_list, dim=0)
def generate_attention_mask(self, pair_num):
max_len = max(pair_num)
batch_size = len(pair_num)
mask = torch.zeros(batch_size, max_len, dtype=torch.bool, device=self.device)
for i, length in enumerate(pair_num):
mask[i, length:] = True
return mask
def generate_attention_mask_custom(self, pair_num):
max_len = max(pair_num)
mask = torch.zeros(max_len, max_len, dtype=torch.bool, device=self.device)
mask[0, 1:] = True
return mask
class ListConRankerModel(PreTrainedModel):
"""
ListConRanker model for sequence classification that's compatible with AutoModelForSequenceClassification.
"""
config_class = ListConRankerConfig
base_model_prefix = "listconranker"
def __init__(self, config: ListConRankerConfig):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.hf_model = BertModel(config.bert_config)
self.sigmoid = nn.Sigmoid()
self.linear_in_embedding = nn.Linear(
config.hidden_size, config.list_con_hidden_size
)
self.list_transformer = ListTransformer(
config.list_transformer_layers,
config,
)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[tuple[torch.Tensor], SequenceClassifierOutput]:
if self.training:
raise NotImplementedError("Training not supported; use eval mode.")
device = input_ids.device
self.list_transformer.device = device
# Reorganize by unique queries and their passages
(
reorganized_input_ids,
reorganized_attention_mask,
reorganized_token_type_ids,
pair_nums,
group_indices,
) = self._reorganize_inputs(input_ids, attention_mask, token_type_ids)
out = self.hf_model(
input_ids=reorganized_input_ids,
attention_mask=reorganized_attention_mask,
token_type_ids=reorganized_token_type_ids,
return_dict=True,
)
feats = out.last_hidden_state
pooled = self.average_pooling(feats, reorganized_attention_mask)
embedded = self.linear_in_embedding(pooled)
logits, _ = self.list_transformer(embedded, pair_nums)
probs = self.sigmoid(logits)
# Restore original order
sorted_probs = self._restore_original_order(probs, group_indices)
sorted_logits = self._restore_original_order(logits, group_indices)
if not return_dict:
return (sorted_probs, sorted_logits)
return SequenceClassifierOutput(
loss=None,
logits=sorted_logits,
hidden_states=out.hidden_states,
attentions=out.attentions,
)
def _reorganize_inputs(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: Optional[torch.Tensor],
) -> tuple[
torch.Tensor, torch.Tensor, Optional[torch.Tensor], List[int], List[List[int]]
]:
"""
Group inputs by unique queries: for each query, produce [query] + its passages,
then flatten, pad, and return pair sizes and original indices mapping.
"""
batch_size = input_ids.size(0)
# Structure: query_key -> {
# 'query': (seq, mask, tt),
# 'passages': [(seq, mask, tt), ...],
# 'indices': [original_index, ...]
# }
grouped = {}
for idx in range(batch_size):
seq = input_ids[idx]
mask = attention_mask[idx]
token_type_ids[idx] if token_type_ids is not None else torch.zeros_like(seq)
sep_idxs = (seq == self.config.sep_token_id).nonzero(as_tuple=True)[0]
if sep_idxs.numel() == 0:
raise ValueError(f"No SEP in sequence {idx}")
first_sep = sep_idxs[0].item()
second_sep = sep_idxs[1].item()
# Extract query and passage
q_seq = seq[: first_sep + 1]
q_mask = mask[: first_sep + 1]
q_tt = torch.zeros_like(q_seq)
p_seq = seq[first_sep : second_sep + 1]
p_mask = mask[first_sep : second_sep + 1]
p_seq = p_seq.clone()
p_seq[0] = self.config.cls_token_id
p_tt = torch.zeros_like(p_seq)
# Build key excluding CLS/SEP
key = tuple(
q_seq[
(q_seq != self.config.cls_token_id)
& (q_seq != self.config.sep_token_id)
].tolist()
)
# truncation
q_seq = q_seq[: self.config.max_position_embeddings]
q_seq[-1] = self.config.sep_token_id
p_seq = p_seq[: self.config.max_position_embeddings]
p_seq[-1] = self.config.sep_token_id
q_mask = q_mask[: self.config.max_position_embeddings]
p_mask = p_mask[: self.config.max_position_embeddings]
q_tt = q_tt[: self.config.max_position_embeddings]
p_tt = p_tt[: self.config.max_position_embeddings]
if key not in grouped:
grouped[key] = {
"query": (q_seq, q_mask, q_tt),
"passages": [],
"indices": [],
}
grouped[key]["passages"].append((p_seq, p_mask, p_tt))
grouped[key]["indices"].append(idx)
# Flatten according to group insertion order
seqs, masks, tts, pair_nums, group_indices = [], [], [], [], []
for key, data in grouped.items():
q_seq, q_mask, q_tt = data["query"]
passages = data["passages"]
indices = data["indices"]
# record sizes and original positions
pair_nums.append(len(passages) + 1) # +1 for the query
group_indices.append(indices)
# append query then its passages
seqs.append(q_seq)
masks.append(q_mask)
tts.append(q_tt)
for p_seq, p_mask, p_tt in passages:
seqs.append(p_seq)
masks.append(p_mask)
tts.append(p_tt)
# Pad to uniform length
max_len = max(s.size(0) for s in seqs)
padded_seqs, padded_masks, padded_tts = [], [], []
for s, m, t in zip(seqs, masks, tts):
ps = torch.zeros(max_len, dtype=s.dtype, device=s.device)
pm = torch.zeros(max_len, dtype=m.dtype, device=m.device)
pt = torch.zeros(max_len, dtype=t.dtype, device=t.device)
ps[: s.size(0)] = s
pm[: m.size(0)] = m
pt[: t.size(0)] = t
padded_seqs.append(ps)
padded_masks.append(pm)
padded_tts.append(pt)
rid = torch.stack(padded_seqs)
ram = torch.stack(padded_masks)
rtt = torch.stack(padded_tts) if token_type_ids is not None else None
return rid, ram, rtt, pair_nums, group_indices
def _restore_original_order(
self,
logits: torch.Tensor,
group_indices: List[List[int]],
) -> torch.Tensor:
"""
Map flattened logits back so each original index gets its passage score.
"""
out = torch.zeros(logits.size(0), dtype=logits.dtype, device=logits.device)
i = 0
for indices in group_indices:
for idx in indices:
out[idx] = logits[i]
i += 1
return out.reshape(-1, 1)
def average_pooling(self, hidden_state, attention_mask):
extended_attention_mask = (
attention_mask.unsqueeze(-1)
.expand(hidden_state.size())
.to(dtype=hidden_state.dtype)
)
masked_hidden_state = hidden_state * extended_attention_mask
sum_embeddings = torch.sum(masked_hidden_state, dim=1)
sum_mask = extended_attention_mask.sum(dim=1)
return sum_embeddings / sum_mask
@classmethod
def from_pretrained(
cls, model_name_or_path, config: Optional[ListConRankerConfig] = None, **kwargs
):
model = super().from_pretrained(model_name_or_path, config=config, **kwargs)
model.hf_model = BertModel.from_pretrained(
model_name_or_path, config=model.config.bert_config, **kwargs
)
linear_path = hf_hub_download(
repo_id = model_name_or_path,
filename = "linear_in_embedding.pt",
revision = "main",
cache_dir = kwargs['cache_dir'] if 'cache_dir' in kwargs else None
)
list_transformer_path = hf_hub_download(
repo_id = "ByteDance/ListConRanker",
filename = "list_transformer.pt",
revision = "main",
cache_dir = kwargs['cache_dir'] if 'cache_dir' in kwargs else None
)
try:
model.linear_in_embedding.load_state_dict(torch.load(linear_path))
model.list_transformer.load_state_dict(torch.load(list_transformer_path))
except FileNotFoundError as e:
raise e
return model
def multi_passage(
self,
sentences: List[List[str]],
batch_size: int = 32,
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(
"ByteDance/ListConRanker"
),
):
"""
Process multiple passages for each query.
:param sentences: List of lists, where each inner list contains sentences for a query.
:return: Tensor of logits for each passage.
"""
pairs = []
for batch in sentences:
if len(batch) < 2:
raise ValueError("Each query must have at least one passage.")
query = batch[0]
passages = batch[1:]
for passage in passages:
pairs.append((query, passage))
total_batches = (len(pairs) + batch_size - 1) // batch_size
total_logits = torch.zeros(len(pairs), dtype=torch.float, device=self.device)
for batch in range(total_batches):
batch_pairs = pairs[batch * batch_size : (batch + 1) * batch_size]
inputs = tokenizer(
batch_pairs,
padding=True,
truncation=False,
return_tensors="pt",
)
for k, v in inputs.items():
inputs[k] = v.to(self.device)
logits = self(**inputs)[0]
total_logits[batch * batch_size : (batch + 1) * batch_size] = (
logits.squeeze(1)
)
return total_logits.tolist()
def multi_passage_in_iterative_inference(
self,
sentences: List[str],
stop_num: int = 20,
decrement_rate: float = 0.2,
min_filter_num: int = 10,
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(
"ByteDance/ListConRanker"
),
):
"""
Process multiple passages for one query in iterative inference.
:param sentences: List contains sentences for a query.
:return: Tensor of logits for each passage.
"""
if stop_num < 1:
raise ValueError("stop_num must be greater than 0")
if decrement_rate <= 0 or decrement_rate >= 1:
raise ValueError("decrement_rate must be in (0, 1)")
if min_filter_num < 1:
raise ValueError("min_filter_num must be greater than 0")
query = sentences[0]
passage = sentences[1:]
filter_times = 0
passage2score = defaultdict(list)
while len(passage) > stop_num:
batch = [[query] + passage]
pred_scores = self.multi_passage(
batch, batch_size=len(batch[0]) - 1, tokenizer=tokenizer
)
pred_scores_argsort = np.argsort(
pred_scores
).tolist() # Sort in increasing order
passage_len = len(passage)
to_filter_num = math.ceil(passage_len * decrement_rate)
if to_filter_num < min_filter_num:
to_filter_num = min_filter_num
have_filter_num = 0
while have_filter_num < to_filter_num:
idx = pred_scores_argsort[have_filter_num]
passage2score[passage[idx]].append(pred_scores[idx] + filter_times)
have_filter_num += 1
while (
pred_scores[pred_scores_argsort[have_filter_num - 1]]
== pred_scores[pred_scores_argsort[have_filter_num]]
):
idx = pred_scores_argsort[have_filter_num]
passage2score[passage[idx]].append(pred_scores[idx] + filter_times)
have_filter_num += 1
next_passage = []
next_passage_idx = have_filter_num
while next_passage_idx < len(passage):
idx = pred_scores_argsort[next_passage_idx]
next_passage.append(passage[idx])
next_passage_idx += 1
passage = next_passage
filter_times += 1
batch = [[query] + passage]
pred_scores = self.multi_passage(
batch, batch_size=len(batch[0]) - 1, tokenizer=tokenizer
)
cnt = 0
while cnt < len(passage):
passage2score[passage[cnt]].append(pred_scores[cnt] + filter_times)
cnt += 1
passage = sentences[1:]
final_score = []
for i in range(len(passage)):
p = passage[i]
final_score.append(passage2score[p][0])
return final_score