Roman Solomatin
commited on
start implementing
Browse files- config.json +7 -2
- listconranker.py +252 -0
config.json
CHANGED
@@ -1,14 +1,19 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
"BertModel"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"classifier_dropout": null,
|
7 |
"directionality": "bidi",
|
8 |
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
-
"hidden_size":
|
|
|
12 |
"id2label": {
|
13 |
"0": "LABEL_0"
|
14 |
},
|
|
|
1 |
{
|
2 |
+
"listconranker": [
|
3 |
"BertModel"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "listconranker.ListConRankerConfig",
|
7 |
+
"AutoModelForSequenceClassification": "listconranker.ListConRankerModel"
|
8 |
+
},
|
9 |
"attention_probs_dropout_prob": 0.1,
|
10 |
"classifier_dropout": null,
|
11 |
"directionality": "bidi",
|
12 |
"gradient_checkpointing": false,
|
13 |
"hidden_act": "gelu",
|
14 |
"hidden_dropout_prob": 0.1,
|
15 |
+
"hidden_size": 1792,
|
16 |
+
"base_hidden_size": 1024,
|
17 |
"id2label": {
|
18 |
"0": "LABEL_0"
|
19 |
},
|
listconranker.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
|
4 |
+
# and associated documentation files (the "Software"), to deal in the Software without
|
5 |
+
# restriction, including without limitation the rights to use, copy, modify, merge, publish,
|
6 |
+
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
|
7 |
+
# Software is furnished to do so, subject to the following conditions:
|
8 |
+
#
|
9 |
+
# The above copyright notice and this permission notice shall be included in all copies or
|
10 |
+
# substantial portions of the Software.
|
11 |
+
#
|
12 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
13 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
14 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
15 |
+
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
16 |
+
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
17 |
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
18 |
+
# OTHER DEALINGS IN THE SOFTWARE.
|
19 |
+
|
20 |
+
import math
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import functional as F
|
24 |
+
import numpy as np
|
25 |
+
from transformers import (
|
26 |
+
AutoTokenizer,
|
27 |
+
is_torch_npu_available,
|
28 |
+
AutoModel,
|
29 |
+
PreTrainedModel,
|
30 |
+
PretrainedConfig,
|
31 |
+
AutoConfig,
|
32 |
+
BertModel,
|
33 |
+
BertConfig
|
34 |
+
)
|
35 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
36 |
+
from typing import Union, List, Optional
|
37 |
+
|
38 |
+
|
39 |
+
class ListConRankerConfig(PretrainedConfig):
|
40 |
+
"""Configuration class for ListConRanker model."""
|
41 |
+
|
42 |
+
model_type = "listconranker"
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
list_transformer_layers: int = 2,
|
47 |
+
num_attention_heads: int = 8,
|
48 |
+
hidden_size: int = 1792,
|
49 |
+
base_hidden_size: int = 1024,
|
50 |
+
num_labels: int = 1,
|
51 |
+
**kwargs
|
52 |
+
):
|
53 |
+
super().__init__(**kwargs)
|
54 |
+
self.list_transformer_layers = list_transformer_layers
|
55 |
+
self.num_attention_heads = num_attention_heads
|
56 |
+
self.hidden_size = hidden_size
|
57 |
+
self.base_hidden_size = base_hidden_size
|
58 |
+
self.num_labels = num_labels
|
59 |
+
|
60 |
+
self.bert_config = BertConfig(**kwargs)
|
61 |
+
self.bert_config.output_hidden_states = True
|
62 |
+
|
63 |
+
class QueryEmbedding(nn.Module):
|
64 |
+
def __init__(self, config) -> None:
|
65 |
+
super().__init__()
|
66 |
+
self.query_embedding = nn.Embedding(2, config.hidden_size)
|
67 |
+
self.layerNorm = nn.LayerNorm(config.hidden_size)
|
68 |
+
|
69 |
+
def forward(self, x, tags):
|
70 |
+
query_embeddings = self.query_embedding(tags)
|
71 |
+
x += query_embeddings
|
72 |
+
x = self.layerNorm(x)
|
73 |
+
return x
|
74 |
+
|
75 |
+
class ListTransformer(nn.Module):
|
76 |
+
def __init__(self, num_layer, config) -> None:
|
77 |
+
super().__init__()
|
78 |
+
self.config = config
|
79 |
+
self.list_transformer_layer = nn.TransformerEncoderLayer(1792, self.config.num_attention_heads, batch_first=True, activation=F.gelu, norm_first=False)
|
80 |
+
self.list_transformer = nn.TransformerEncoder(self.list_transformer_layer, num_layer)
|
81 |
+
self.relu = nn.ReLU()
|
82 |
+
self.query_embedding = QueryEmbedding(config)
|
83 |
+
|
84 |
+
self.linear_score3 = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
85 |
+
self.linear_score2 = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
86 |
+
self.linear_score1 = nn.Linear(config.hidden_size * 2, 1)
|
87 |
+
|
88 |
+
def forward(self, pair_features, pair_nums):
|
89 |
+
pair_nums = [x + 1 for x in pair_nums]
|
90 |
+
batch_pair_features = pair_features.split(pair_nums)
|
91 |
+
|
92 |
+
pair_feature_query_passage_concat_list = []
|
93 |
+
for i in range(len(batch_pair_features)):
|
94 |
+
pair_feature_query = batch_pair_features[i][0].unsqueeze(0).repeat(pair_nums[i] - 1, 1)
|
95 |
+
pair_feature_passage = batch_pair_features[i][1:]
|
96 |
+
pair_feature_query_passage_concat_list.append(torch.cat([pair_feature_query, pair_feature_passage], dim=1))
|
97 |
+
pair_feature_query_passage_concat = torch.cat(pair_feature_query_passage_concat_list, dim=0)
|
98 |
+
|
99 |
+
batch_pair_features = nn.utils.rnn.pad_sequence(batch_pair_features, batch_first=True)
|
100 |
+
|
101 |
+
query_embedding_tags = torch.zeros(batch_pair_features.size(0), batch_pair_features.size(1), dtype=torch.long, device=self.device)
|
102 |
+
query_embedding_tags[:, 0] = 1
|
103 |
+
batch_pair_features = self.query_embedding(batch_pair_features, query_embedding_tags)
|
104 |
+
|
105 |
+
mask = self.generate_attention_mask(pair_nums)
|
106 |
+
query_mask = self.generate_attention_mask_custom(pair_nums)
|
107 |
+
pair_list_features = self.list_transformer(batch_pair_features, src_key_padding_mask=mask, mask=query_mask)
|
108 |
+
|
109 |
+
output_pair_list_features = []
|
110 |
+
output_query_list_features = []
|
111 |
+
pair_features_after_transformer_list = []
|
112 |
+
for idx, pair_num in enumerate(pair_nums):
|
113 |
+
output_pair_list_features.append(pair_list_features[idx, 1:pair_num, :])
|
114 |
+
output_query_list_features.append(pair_list_features[idx, 0, :])
|
115 |
+
pair_features_after_transformer_list.append(pair_list_features[idx, :pair_num, :])
|
116 |
+
|
117 |
+
pair_features_after_transformer_cat_query_list = []
|
118 |
+
for idx, pair_num in enumerate(pair_nums):
|
119 |
+
query_ft = output_query_list_features[idx].unsqueeze(0).repeat(pair_num - 1, 1)
|
120 |
+
pair_features_after_transformer_cat_query = torch.cat([query_ft, output_pair_list_features[idx]], dim=1)
|
121 |
+
pair_features_after_transformer_cat_query_list.append(pair_features_after_transformer_cat_query)
|
122 |
+
pair_features_after_transformer_cat_query = torch.cat(pair_features_after_transformer_cat_query_list, dim=0)
|
123 |
+
|
124 |
+
pair_feature_query_passage_concat = self.relu(self.linear_score2(pair_feature_query_passage_concat))
|
125 |
+
pair_features_after_transformer_cat_query = self.relu(self.linear_score3(pair_features_after_transformer_cat_query))
|
126 |
+
final_ft = torch.cat([pair_feature_query_passage_concat, pair_features_after_transformer_cat_query], dim=1)
|
127 |
+
logits = self.linear_score1(final_ft).squeeze()
|
128 |
+
|
129 |
+
return logits, torch.cat(pair_features_after_transformer_list, dim=0)
|
130 |
+
|
131 |
+
def generate_attention_mask(self, pair_num):
|
132 |
+
max_len = max(pair_num)
|
133 |
+
batch_size = len(pair_num)
|
134 |
+
mask = torch.zeros(batch_size, max_len, dtype=torch.bool, device=self.device)
|
135 |
+
for i, length in enumerate(pair_num):
|
136 |
+
mask[i, length:] = True
|
137 |
+
return mask
|
138 |
+
|
139 |
+
def generate_attention_mask_custom(self, pair_num):
|
140 |
+
max_len = max(pair_num)
|
141 |
+
mask = torch.zeros(max_len, max_len, dtype=torch.bool, device=self.device)
|
142 |
+
mask[0, 1:] = True
|
143 |
+
return mask
|
144 |
+
|
145 |
+
|
146 |
+
class ListConRankerModel(PreTrainedModel):
|
147 |
+
"""
|
148 |
+
ListConRanker model for sequence classification that's compatible with AutoModelForSequenceClassification.
|
149 |
+
"""
|
150 |
+
config_class = ListConRankerConfig
|
151 |
+
base_model_prefix = "listconranker"
|
152 |
+
|
153 |
+
def __init__(self, config: ListConRankerConfig):
|
154 |
+
super().__init__(config)
|
155 |
+
self.config = config
|
156 |
+
self.num_labels = config.num_labels
|
157 |
+
self.hf_model = BertModel(config)
|
158 |
+
|
159 |
+
self.sigmoid = nn.Sigmoid()
|
160 |
+
|
161 |
+
self.linear_in_embedding = nn.Linear(config.base_hidden_size, config.hidden_size)
|
162 |
+
self.list_transformer = ListTransformer(
|
163 |
+
config.list_transformer_layers,
|
164 |
+
config,
|
165 |
+
)
|
166 |
+
|
167 |
+
def forward(
|
168 |
+
self,
|
169 |
+
input_ids: Optional[torch.Tensor] = None,
|
170 |
+
attention_mask: Optional[torch.Tensor] = None,
|
171 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
172 |
+
position_ids: Optional[torch.Tensor] = None,
|
173 |
+
head_mask: Optional[torch.Tensor] = None,
|
174 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
175 |
+
labels: Optional[torch.Tensor] = None,
|
176 |
+
output_attentions: Optional[bool] = None,
|
177 |
+
output_hidden_states: Optional[bool] = None,
|
178 |
+
return_dict: Optional[bool] = None,
|
179 |
+
pair_num: Optional[torch.Tensor] = None,
|
180 |
+
**kwargs
|
181 |
+
) -> Union[SequenceClassifierOutput, tuple]:
|
182 |
+
# Handle pair_num parameter
|
183 |
+
if pair_num is not None:
|
184 |
+
pair_nums = pair_num.tolist()
|
185 |
+
else:
|
186 |
+
# Default behavior if pair_num is not provided
|
187 |
+
batch_size = input_ids.size(0) if input_ids is not None else inputs_embeds.size(0)
|
188 |
+
pair_nums = [1] * batch_size
|
189 |
+
|
190 |
+
# Get device
|
191 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
192 |
+
self.list_transformer.device = device
|
193 |
+
|
194 |
+
# Forward through base model
|
195 |
+
if self.training:
|
196 |
+
pass
|
197 |
+
else:
|
198 |
+
split_batch = 400
|
199 |
+
if sum(pair_nums) > split_batch:
|
200 |
+
last_hidden_state_list = []
|
201 |
+
input_ids_list = input_ids.split(split_batch)
|
202 |
+
attention_mask_list = attention_mask.split(split_batch)
|
203 |
+
for i in range(len(input_ids_list)):
|
204 |
+
last_hidden_state = self.hf_model(
|
205 |
+
input_ids=input_ids_list[i],
|
206 |
+
attention_mask=attention_mask_list[i],
|
207 |
+
return_dict=True).hidden_states[-1]
|
208 |
+
last_hidden_state_list.append(last_hidden_state)
|
209 |
+
last_hidden_state = torch.cat(last_hidden_state_list, dim=0)
|
210 |
+
else:
|
211 |
+
ranker_out = self.hf_model(
|
212 |
+
input_ids=input_ids,
|
213 |
+
attention_mask=attention_mask,
|
214 |
+
token_type_ids=token_type_ids,
|
215 |
+
position_ids=position_ids,
|
216 |
+
head_mask=head_mask,
|
217 |
+
inputs_embeds=inputs_embeds,
|
218 |
+
output_attentions=output_attentions,
|
219 |
+
return_dict=True)
|
220 |
+
last_hidden_state = ranker_out.last_hidden_state
|
221 |
+
|
222 |
+
pair_features = self.average_pooling(last_hidden_state, attention_mask)
|
223 |
+
pair_features = self.linear_in_embedding(pair_features)
|
224 |
+
|
225 |
+
logits, pair_features_after_list_transformer = self.list_transformer(pair_features, pair_nums)
|
226 |
+
logits = self.sigmoid(logits)
|
227 |
+
|
228 |
+
return logits
|
229 |
+
|
230 |
+
def average_pooling(self, hidden_state, attention_mask):
|
231 |
+
extended_attention_mask = attention_mask.unsqueeze(-1).expand(hidden_state.size()).to(dtype=hidden_state.dtype)
|
232 |
+
masked_hidden_state = hidden_state * extended_attention_mask
|
233 |
+
sum_embeddings = torch.sum(masked_hidden_state, dim=1)
|
234 |
+
sum_mask = extended_attention_mask.sum(dim=1)
|
235 |
+
return sum_embeddings / sum_mask
|
236 |
+
|
237 |
+
@classmethod
|
238 |
+
def from_pretrained(cls, model_name_or_path, config: Optional[ListConRankerConfig] = None, **kwargs):
|
239 |
+
model = super().from_pretrained(
|
240 |
+
model_name_or_path,config=config, **kwargs)
|
241 |
+
|
242 |
+
# Load custom weights
|
243 |
+
linear_path = f"{model_name_or_path}/linear_in_embedding.pt"
|
244 |
+
transformer_path = f"{model_name_or_path}/list_transformer.pt"
|
245 |
+
|
246 |
+
try:
|
247 |
+
model.linear_in_embedding.load_state_dict(torch.load(linear_path))
|
248 |
+
model.list_transformer.load_state_dict(torch.load(transformer_path))
|
249 |
+
except FileNotFoundError:
|
250 |
+
print(f"Warning: Could not load custom weights from {model_name_or_path}")
|
251 |
+
|
252 |
+
return model
|