Roman Solomatin
commited on
finish integration
Browse files- README.md +43 -7
- config.json +3 -1
- listconranker.py +201 -41
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- mteb
|
|
|
|
|
|
|
4 |
model-index:
|
5 |
- name: ListConRanker
|
6 |
results:
|
@@ -103,9 +106,9 @@ To reduce the discrepancy between training and inference, we propose iterative i
|
|
103 |
|
104 |
## How to use
|
105 |
```python
|
106 |
-
from
|
107 |
|
108 |
-
reranker =
|
109 |
|
110 |
# [query, passages_1, passage_2, ..., passage_n]
|
111 |
batch = [
|
@@ -125,15 +128,48 @@ batch = [
|
|
125 |
]
|
126 |
|
127 |
# for conventional inference, please manage the batch size by yourself
|
128 |
-
scores = reranker.
|
129 |
print(scores)
|
130 |
# [[0.5126953125, 0.331298828125, 0.3642578125], [0.63671875, 0.71630859375, 0.42822265625, 0.35302734375]]
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
print(scores)
|
136 |
-
# [0.
|
137 |
```
|
138 |
|
139 |
To reproduce the results with iterative inference, please run:
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- mteb
|
4 |
+
- sentence-transformers
|
5 |
+
- transformers
|
6 |
+
pipeline_tag: text-ranking
|
7 |
model-index:
|
8 |
- name: ListConRanker
|
9 |
results:
|
|
|
106 |
|
107 |
## How to use
|
108 |
```python
|
109 |
+
from transfoermers import AutoModelForSequenceClassification
|
110 |
|
111 |
+
reranker = AutoModelForSequenceClassification('ByteDance/ListConRanker', trust_remote_code=True)
|
112 |
|
113 |
# [query, passages_1, passage_2, ..., passage_n]
|
114 |
batch = [
|
|
|
128 |
]
|
129 |
|
130 |
# for conventional inference, please manage the batch size by yourself
|
131 |
+
scores = reranker.multi_passage(batch)
|
132 |
print(scores)
|
133 |
# [[0.5126953125, 0.331298828125, 0.3642578125], [0.63671875, 0.71630859375, 0.42822265625, 0.35302734375]]
|
134 |
|
135 |
+
inputs = tokenizer(
|
136 |
+
[
|
137 |
+
[
|
138 |
+
"query 1",
|
139 |
+
"passage_11",
|
140 |
+
],
|
141 |
+
[
|
142 |
+
"query_2",
|
143 |
+
"passage_21",
|
144 |
+
]
|
145 |
+
|
146 |
+
],
|
147 |
+
return_tensors="pt",
|
148 |
+
padding=True,
|
149 |
+
)
|
150 |
+
probs, logits = model(**inputs)
|
151 |
+
print(probs)
|
152 |
+
# tensor([[0.4359], [0.3840]], grad_fn=<ViewBackward0>)
|
153 |
+
```
|
154 |
+
or using the `sentence_transformers` library:
|
155 |
+
```python
|
156 |
+
from sentence_transformers import CrossEncoder
|
157 |
+
|
158 |
+
model = CrossEncoder('ByteDance/ListConRanker', trust_remote_code=True)
|
159 |
+
|
160 |
+
inputs = [
|
161 |
+
[
|
162 |
+
"query 1",
|
163 |
+
"passage_11",
|
164 |
+
],
|
165 |
+
[
|
166 |
+
"query_2",
|
167 |
+
"passage_21",
|
168 |
+
]
|
169 |
+
]
|
170 |
+
scores = model.predict(inputs)
|
171 |
print(scores)
|
172 |
+
# [0.4359, 0.3840, 0.3231]
|
173 |
```
|
174 |
|
175 |
To reproduce the results with iterative inference, please run:
|
config.json
CHANGED
@@ -39,5 +39,7 @@
|
|
39 |
"transformers_version": "4.45.2",
|
40 |
"type_vocab_size": 2,
|
41 |
"use_cache": true,
|
42 |
-
"vocab_size": 21128
|
|
|
|
|
43 |
}
|
|
|
39 |
"transformers_version": "4.45.2",
|
40 |
"type_vocab_size": 2,
|
41 |
"use_cache": true,
|
42 |
+
"vocab_size": 21128,
|
43 |
+
"cls_token_id": 101,
|
44 |
+
"sep_token_id": 102
|
45 |
}
|
listconranker.py
CHANGED
@@ -16,22 +16,18 @@
|
|
16 |
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
17 |
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
18 |
# OTHER DEALINGS IN THE SOFTWARE.
|
|
|
19 |
|
20 |
-
import math
|
21 |
import torch
|
22 |
from torch import nn
|
23 |
from torch.nn import functional as F
|
24 |
-
import numpy as np
|
25 |
from transformers import (
|
26 |
-
AutoTokenizer,
|
27 |
-
is_torch_npu_available,
|
28 |
-
AutoModel,
|
29 |
PreTrainedModel,
|
30 |
-
PretrainedConfig,
|
31 |
-
AutoConfig,
|
32 |
BertModel,
|
33 |
BertConfig,
|
|
|
34 |
)
|
|
|
35 |
from transformers.modeling_outputs import SequenceClassifierOutput
|
36 |
from typing import Union, List, Optional
|
37 |
|
@@ -46,12 +42,16 @@ class ListConRankerConfig(BertConfig):
|
|
46 |
list_transformer_layers: int = 2,
|
47 |
list_con_hidden_size: int = 1792,
|
48 |
num_labels: int = 1,
|
|
|
|
|
49 |
**kwargs,
|
50 |
):
|
51 |
super().__init__(**kwargs)
|
52 |
self.list_transformer_layers = list_transformer_layers
|
53 |
self.list_con_hidden_size = list_con_hidden_size
|
54 |
self.num_labels = num_labels
|
|
|
|
|
55 |
|
56 |
self.bert_config = BertConfig(**kwargs)
|
57 |
self.bert_config.output_hidden_states = True
|
@@ -75,7 +75,7 @@ class ListTransformer(nn.Module):
|
|
75 |
super().__init__()
|
76 |
self.config = config
|
77 |
self.list_transformer_layer = nn.TransformerEncoderLayer(
|
78 |
-
|
79 |
self.config.num_attention_heads,
|
80 |
batch_first=True,
|
81 |
activation=F.gelu,
|
@@ -213,11 +213,10 @@ class ListConRankerModel(PreTrainedModel):
|
|
213 |
config.list_transformer_layers,
|
214 |
config,
|
215 |
)
|
216 |
-
self.sep_token_id = 102 # [SEP] token ID
|
217 |
|
218 |
def forward(
|
219 |
self,
|
220 |
-
input_ids:
|
221 |
attention_mask: Optional[torch.Tensor] = None,
|
222 |
token_type_ids: Optional[torch.Tensor] = None,
|
223 |
position_ids: Optional[torch.Tensor] = None,
|
@@ -228,36 +227,157 @@ class ListConRankerModel(PreTrainedModel):
|
|
228 |
output_hidden_states: Optional[bool] = None,
|
229 |
return_dict: Optional[bool] = None,
|
230 |
**kwargs,
|
231 |
-
) -> Union[
|
232 |
-
# Get device
|
233 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
234 |
-
self.list_transformer.device = device
|
235 |
-
|
236 |
-
# Forward through base model
|
237 |
if self.training:
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
)
|
258 |
-
logits = self.sigmoid(logits)
|
259 |
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
def average_pooling(self, hidden_state, attention_mask):
|
263 |
extended_attention_mask = (
|
@@ -275,15 +395,55 @@ class ListConRankerModel(PreTrainedModel):
|
|
275 |
cls, model_name_or_path, config: Optional[ListConRankerConfig] = None, **kwargs
|
276 |
):
|
277 |
model = super().from_pretrained(model_name_or_path, config=config, **kwargs)
|
|
|
|
|
|
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
transformer_path = f"{model_name_or_path}/list_transformer.pt"
|
282 |
|
283 |
try:
|
284 |
model.linear_in_embedding.load_state_dict(torch.load(linear_path))
|
285 |
model.list_transformer.load_state_dict(torch.load(transformer_path))
|
286 |
-
except FileNotFoundError:
|
287 |
-
|
288 |
|
289 |
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
17 |
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
18 |
# OTHER DEALINGS IN THE SOFTWARE.
|
19 |
+
from __future__ import annotations
|
20 |
|
|
|
21 |
import torch
|
22 |
from torch import nn
|
23 |
from torch.nn import functional as F
|
|
|
24 |
from transformers import (
|
|
|
|
|
|
|
25 |
PreTrainedModel,
|
|
|
|
|
26 |
BertModel,
|
27 |
BertConfig,
|
28 |
+
AutoTokenizer,
|
29 |
)
|
30 |
+
import os
|
31 |
from transformers.modeling_outputs import SequenceClassifierOutput
|
32 |
from typing import Union, List, Optional
|
33 |
|
|
|
42 |
list_transformer_layers: int = 2,
|
43 |
list_con_hidden_size: int = 1792,
|
44 |
num_labels: int = 1,
|
45 |
+
cls_token_id: int = 101,
|
46 |
+
sep_token_id: int = 102,
|
47 |
**kwargs,
|
48 |
):
|
49 |
super().__init__(**kwargs)
|
50 |
self.list_transformer_layers = list_transformer_layers
|
51 |
self.list_con_hidden_size = list_con_hidden_size
|
52 |
self.num_labels = num_labels
|
53 |
+
self.cls_token_id = cls_token_id
|
54 |
+
self.sep_token_id = sep_token_id
|
55 |
|
56 |
self.bert_config = BertConfig(**kwargs)
|
57 |
self.bert_config.output_hidden_states = True
|
|
|
75 |
super().__init__()
|
76 |
self.config = config
|
77 |
self.list_transformer_layer = nn.TransformerEncoderLayer(
|
78 |
+
config.list_con_hidden_size,
|
79 |
self.config.num_attention_heads,
|
80 |
batch_first=True,
|
81 |
activation=F.gelu,
|
|
|
213 |
config.list_transformer_layers,
|
214 |
config,
|
215 |
)
|
|
|
216 |
|
217 |
def forward(
|
218 |
self,
|
219 |
+
input_ids: torch.Tensor,
|
220 |
attention_mask: Optional[torch.Tensor] = None,
|
221 |
token_type_ids: Optional[torch.Tensor] = None,
|
222 |
position_ids: Optional[torch.Tensor] = None,
|
|
|
227 |
output_hidden_states: Optional[bool] = None,
|
228 |
return_dict: Optional[bool] = None,
|
229 |
**kwargs,
|
230 |
+
) -> Union[tuple[torch.Tensor], SequenceClassifierOutput]:
|
|
|
|
|
|
|
|
|
|
|
231 |
if self.training:
|
232 |
+
raise NotImplementedError("Training not supported; use eval mode.")
|
233 |
+
device = input_ids.device
|
234 |
+
self.list_transformer.device = device
|
235 |
+
# Reorganize by unique queries and their passages
|
236 |
+
(
|
237 |
+
reorganized_input_ids,
|
238 |
+
reorganized_attention_mask,
|
239 |
+
reorganized_token_type_ids,
|
240 |
+
pair_nums,
|
241 |
+
group_indices,
|
242 |
+
) = self._reorganize_inputs(input_ids, attention_mask, token_type_ids)
|
243 |
+
|
244 |
+
out = self.hf_model(
|
245 |
+
input_ids=reorganized_input_ids,
|
246 |
+
attention_mask=reorganized_attention_mask,
|
247 |
+
token_type_ids=reorganized_token_type_ids,
|
248 |
+
return_dict=True,
|
249 |
+
)
|
250 |
+
feats = out.last_hidden_state
|
251 |
+
pooled = self.average_pooling(feats, reorganized_attention_mask)
|
252 |
+
embedded = self.linear_in_embedding(pooled)
|
253 |
+
logits, _ = self.list_transformer(embedded, pair_nums)
|
254 |
+
probs = self.sigmoid(logits)
|
255 |
+
|
256 |
+
# Restore original order
|
257 |
+
sorted_probs = self._restore_original_order(probs, group_indices)
|
258 |
+
sorted_logits = self._restore_original_order(logits, group_indices)
|
259 |
+
if not return_dict:
|
260 |
+
return (sorted_probs, sorted_logits)
|
261 |
+
|
262 |
+
return SequenceClassifierOutput(
|
263 |
+
loss=None,
|
264 |
+
logits=sorted_logits,
|
265 |
+
hidden_states=out.hidden_states,
|
266 |
+
attentions=out.attentions,
|
267 |
+
)
|
268 |
|
269 |
+
def _reorganize_inputs(
|
270 |
+
self,
|
271 |
+
input_ids: torch.Tensor,
|
272 |
+
attention_mask: torch.Tensor,
|
273 |
+
token_type_ids: Optional[torch.Tensor],
|
274 |
+
) -> tuple[
|
275 |
+
torch.Tensor, torch.Tensor, Optional[torch.Tensor], List[int], List[List[int]]
|
276 |
+
]:
|
277 |
+
"""
|
278 |
+
Group inputs by unique queries: for each query, produce [query] + its passages,
|
279 |
+
then flatten, pad, and return pair sizes and original indices mapping.
|
280 |
+
"""
|
281 |
+
batch_size = input_ids.size(0)
|
282 |
+
# Structure: query_key -> {
|
283 |
+
# 'query': (seq, mask, tt),
|
284 |
+
# 'passages': [(seq, mask, tt), ...],
|
285 |
+
# 'indices': [original_index, ...]
|
286 |
+
# }
|
287 |
+
grouped = {}
|
288 |
+
|
289 |
+
for idx in range(batch_size):
|
290 |
+
seq = input_ids[idx]
|
291 |
+
mask = attention_mask[idx]
|
292 |
+
token_type_ids[idx] if token_type_ids is not None else torch.zeros_like(seq)
|
293 |
+
|
294 |
+
sep_idxs = (seq == self.config.sep_token_id).nonzero(as_tuple=True)[0]
|
295 |
+
if sep_idxs.numel() == 0:
|
296 |
+
raise ValueError(f"No SEP in sequence {idx}")
|
297 |
+
first_sep = sep_idxs[0].item()
|
298 |
+
|
299 |
+
# Extract query and passage
|
300 |
+
q_seq = seq[: first_sep + 1]
|
301 |
+
q_mask = mask[: first_sep + 1]
|
302 |
+
q_tt = torch.zeros_like(q_seq)
|
303 |
+
|
304 |
+
p_seq = seq[first_sep:]
|
305 |
+
p_mask = mask[first_sep:]
|
306 |
+
p_seq = p_seq.clone()
|
307 |
+
p_seq[0] = self.config.cls_token_id
|
308 |
+
p_tt = torch.zeros_like(p_seq)
|
309 |
+
|
310 |
+
# Build key excluding CLS/SEP
|
311 |
+
key = tuple(
|
312 |
+
q_seq[
|
313 |
+
(q_seq != self.config.cls_token_id)
|
314 |
+
& (q_seq != self.config.sep_token_id)
|
315 |
+
].tolist()
|
316 |
)
|
|
|
317 |
|
318 |
+
if key not in grouped:
|
319 |
+
grouped[key] = {
|
320 |
+
"query": (q_seq, q_mask, q_tt),
|
321 |
+
"passages": [],
|
322 |
+
"indices": [],
|
323 |
+
}
|
324 |
+
grouped[key]["passages"].append((p_seq, p_mask, p_tt))
|
325 |
+
grouped[key]["indices"].append(idx)
|
326 |
+
|
327 |
+
# Flatten according to group insertion order
|
328 |
+
seqs, masks, tts, pair_nums, group_indices = [], [], [], [], []
|
329 |
+
for key, data in grouped.items():
|
330 |
+
q_seq, q_mask, q_tt = data["query"]
|
331 |
+
passages = data["passages"]
|
332 |
+
indices = data["indices"]
|
333 |
+
# record sizes and original positions
|
334 |
+
pair_nums.append(len(passages) + 1) # +1 for the query
|
335 |
+
group_indices.append(indices)
|
336 |
+
|
337 |
+
# append query then its passages
|
338 |
+
seqs.append(q_seq)
|
339 |
+
masks.append(q_mask)
|
340 |
+
tts.append(q_tt)
|
341 |
+
for p_seq, p_mask, p_tt in passages:
|
342 |
+
seqs.append(p_seq)
|
343 |
+
masks.append(p_mask)
|
344 |
+
tts.append(p_tt)
|
345 |
+
|
346 |
+
# Pad to uniform length
|
347 |
+
max_len = max(s.size(0) for s in seqs)
|
348 |
+
padded_seqs, padded_masks, padded_tts = [], [], []
|
349 |
+
for s, m, t in zip(seqs, masks, tts):
|
350 |
+
ps = torch.zeros(max_len, dtype=s.dtype, device=s.device)
|
351 |
+
pm = torch.zeros(max_len, dtype=m.dtype, device=m.device)
|
352 |
+
pt = torch.zeros(max_len, dtype=t.dtype, device=t.device)
|
353 |
+
ps[: s.size(0)] = s
|
354 |
+
pm[: m.size(0)] = m
|
355 |
+
pt[: t.size(0)] = t
|
356 |
+
padded_seqs.append(ps)
|
357 |
+
padded_masks.append(pm)
|
358 |
+
padded_tts.append(pt)
|
359 |
+
|
360 |
+
rid = torch.stack(padded_seqs)
|
361 |
+
ram = torch.stack(padded_masks)
|
362 |
+
rtt = torch.stack(padded_tts) if token_type_ids is not None else None
|
363 |
+
|
364 |
+
return rid, ram, rtt, pair_nums, group_indices
|
365 |
+
|
366 |
+
def _restore_original_order(
|
367 |
+
self,
|
368 |
+
logits: torch.Tensor,
|
369 |
+
group_indices: List[List[int]],
|
370 |
+
) -> torch.Tensor:
|
371 |
+
"""
|
372 |
+
Map flattened logits back so each original index gets its passage score.
|
373 |
+
"""
|
374 |
+
out = torch.zeros(logits.size(0), dtype=logits.dtype, device=logits.device)
|
375 |
+
i = 0
|
376 |
+
for indices in group_indices:
|
377 |
+
for idx in indices:
|
378 |
+
out[idx] = logits[i]
|
379 |
+
i += 1
|
380 |
+
return out.reshape(-1, 1)
|
381 |
|
382 |
def average_pooling(self, hidden_state, attention_mask):
|
383 |
extended_attention_mask = (
|
|
|
395 |
cls, model_name_or_path, config: Optional[ListConRankerConfig] = None, **kwargs
|
396 |
):
|
397 |
model = super().from_pretrained(model_name_or_path, config=config, **kwargs)
|
398 |
+
model.hf_model = BertModel.from_pretrained(
|
399 |
+
model_name_or_path, config=model.config.bert_config
|
400 |
+
)
|
401 |
|
402 |
+
linear_path = os.path.join(model_name_or_path, "linear_in_embedding.pt")
|
403 |
+
transformer_path = os.path.join(model_name_or_path, "list_transformer.pt")
|
|
|
404 |
|
405 |
try:
|
406 |
model.linear_in_embedding.load_state_dict(torch.load(linear_path))
|
407 |
model.list_transformer.load_state_dict(torch.load(transformer_path))
|
408 |
+
except FileNotFoundError as e:
|
409 |
+
raise e
|
410 |
|
411 |
return model
|
412 |
+
|
413 |
+
def multi_passage(
|
414 |
+
self,
|
415 |
+
sentences: List[List[str]],
|
416 |
+
batch_size: int = 32,
|
417 |
+
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(
|
418 |
+
"ByteDance/ListConRanker"
|
419 |
+
),
|
420 |
+
):
|
421 |
+
"""
|
422 |
+
Process multiple passages for each query.
|
423 |
+
:param sentences: List of lists, where each inner list contains sentences for a query.
|
424 |
+
:return: Tensor of logits for each passage.
|
425 |
+
"""
|
426 |
+
pairs = []
|
427 |
+
for batch in sentences:
|
428 |
+
if len(batch) < 2:
|
429 |
+
raise ValueError("Each query must have at least one passage.")
|
430 |
+
query = batch[0]
|
431 |
+
passages = batch[1:]
|
432 |
+
for passage in passages:
|
433 |
+
pairs.append((query, passage))
|
434 |
+
|
435 |
+
total_batches = (len(pairs) + batch_size - 1) // batch_size
|
436 |
+
total_logits = torch.zeros(len(pairs), dtype=torch.float, device=self.device)
|
437 |
+
for batch in range(total_batches):
|
438 |
+
batch_pairs = pairs[batch * batch_size : (batch + 1) * batch_size]
|
439 |
+
inputs = tokenizer(
|
440 |
+
batch_pairs,
|
441 |
+
padding=True,
|
442 |
+
truncation=True,
|
443 |
+
return_tensors="pt",
|
444 |
+
)
|
445 |
+
logits = self(**inputs)[0]
|
446 |
+
total_logits[batch * batch_size : (batch + 1) * batch_size] = (
|
447 |
+
logits.squeeze(1)
|
448 |
+
)
|
449 |
+
return total_logits
|
tokenizer_config.json
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
49 |
"max_length": 512,
|
50 |
-
"model_max_length":
|
51 |
"never_split": null,
|
52 |
"pad_to_multiple_of": null,
|
53 |
"pad_token": "[PAD]",
|
|
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
49 |
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
"never_split": null,
|
52 |
"pad_to_multiple_of": null,
|
53 |
"pad_token": "[PAD]",
|