| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						"""Ouro model configuration""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.configuration_utils import PretrainedConfig, layer_type_validation | 
					
					
						
						| 
							 | 
						from transformers.modeling_rope_utils import rope_config_validation | 
					
					
						
						| 
							 | 
						from transformers.utils import logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OuroConfig(PretrainedConfig): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    This is the configuration class to store the configuration of a [`OuroModel`]. It is used to instantiate a | 
					
					
						
						| 
							 | 
						    Ouro model according to the specified arguments, defining the model architecture. Instantiating a configuration | 
					
					
						
						| 
							 | 
						    with the defaults will yield a similar configuration to that of | 
					
					
						
						| 
							 | 
						    Ouro-7B-beta [Qwen/Ouro-7B-beta](https://huggingface.co/Qwen/Ouro-7B-beta). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
					
						
						| 
							 | 
						    documentation from [`PretrainedConfig`] for more information. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vocab_size (`int`, *optional*, defaults to 151936): | 
					
					
						
						| 
							 | 
						            Vocabulary size of the Ouro model. Defines the number of different tokens that can be represented by the | 
					
					
						
						| 
							 | 
						            `inputs_ids` passed when calling [`OuroModel`] | 
					
					
						
						| 
							 | 
						        hidden_size (`int`, *optional*, defaults to 4096): | 
					
					
						
						| 
							 | 
						            Dimension of the hidden representations. | 
					
					
						
						| 
							 | 
						        intermediate_size (`int`, *optional*, defaults to 22016): | 
					
					
						
						| 
							 | 
						            Dimension of the MLP representations. | 
					
					
						
						| 
							 | 
						        num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of attention heads for each attention layer in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_key_value_heads (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
					
						
						| 
							 | 
						            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
					
						
						| 
							 | 
						            by meanpooling all the original heads within that group. For more details, check out [this | 
					
					
						
						| 
							 | 
						            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`. | 
					
					
						
						| 
							 | 
						        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
					
						
						| 
							 | 
						            The non-linear activation function (function or string) in the decoder. | 
					
					
						
						| 
							 | 
						        max_position_embeddings (`int`, *optional*, defaults to 32768): | 
					
					
						
						| 
							 | 
						            The maximum sequence length that this model might ever be used with. | 
					
					
						
						| 
							 | 
						        initializer_range (`float`, *optional*, defaults to 0.02): | 
					
					
						
						| 
							 | 
						            The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
					
						
						| 
							 | 
						        rms_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
					
						
						| 
							 | 
						            The epsilon used by the rms normalization layers. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
					
						
						| 
							 | 
						            relevant if `config.is_decoder=True`. | 
					
					
						
						| 
							 | 
						        tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether the model's input and output word embeddings should be tied. | 
					
					
						
						| 
							 | 
						        rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
					
						
						| 
							 | 
						            The base period of the RoPE embeddings. | 
					
					
						
						| 
							 | 
						        rope_scaling (`Dict`, *optional*): | 
					
					
						
						| 
							 | 
						            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | 
					
					
						
						| 
							 | 
						            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | 
					
					
						
						| 
							 | 
						            accordingly. | 
					
					
						
						| 
							 | 
						            Expected contents: | 
					
					
						
						| 
							 | 
						                `rope_type` (`str`): | 
					
					
						
						| 
							 | 
						                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | 
					
					
						
						| 
							 | 
						                    'llama3'], with 'default' being the original RoPE implementation. | 
					
					
						
						| 
							 | 
						                `factor` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | 
					
					
						
						| 
							 | 
						                    most scaling types, a `factor` of x will enable the model to handle sequences of length x * | 
					
					
						
						| 
							 | 
						                    original maximum pre-trained length. | 
					
					
						
						| 
							 | 
						                `original_max_position_embeddings` (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | 
					
					
						
						| 
							 | 
						                    pretraining. | 
					
					
						
						| 
							 | 
						                `attention_factor` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | 
					
					
						
						| 
							 | 
						                    computation. If unspecified, it defaults to value recommended by the implementation, using the | 
					
					
						
						| 
							 | 
						                    `factor` field to infer the suggested value. | 
					
					
						
						| 
							 | 
						                `beta_fast` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | 
					
					
						
						| 
							 | 
						                    ramp function. If unspecified, it defaults to 32. | 
					
					
						
						| 
							 | 
						                `beta_slow` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | 
					
					
						
						| 
							 | 
						                    ramp function. If unspecified, it defaults to 1. | 
					
					
						
						| 
							 | 
						                `short_factor` (`list[float]`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'longrope'. The scaling factor to be applied to short contexts (< | 
					
					
						
						| 
							 | 
						                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | 
					
					
						
						| 
							 | 
						                    size divided by the number of attention heads divided by 2 | 
					
					
						
						| 
							 | 
						                `long_factor` (`list[float]`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'longrope'. The scaling factor to be applied to long contexts (< | 
					
					
						
						| 
							 | 
						                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | 
					
					
						
						| 
							 | 
						                    size divided by the number of attention heads divided by 2 | 
					
					
						
						| 
							 | 
						                `low_freq_factor` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | 
					
					
						
						| 
							 | 
						                `high_freq_factor` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | 
					
					
						
						| 
							 | 
						        use_sliding_window (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Whether to use sliding window attention. | 
					
					
						
						| 
							 | 
						        sliding_window (`int`, *optional*, defaults to 4096): | 
					
					
						
						| 
							 | 
						            Sliding window attention (SWA) window size. If not specified, will default to `4096`. | 
					
					
						
						| 
							 | 
						        max_window_layers (`int`, *optional*, defaults to 28): | 
					
					
						
						| 
							 | 
						            The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any | 
					
					
						
						| 
							 | 
						            additional layer afterwards will use SWA (Sliding Window Attention). | 
					
					
						
						| 
							 | 
						        layer_types (`list`, *optional*): | 
					
					
						
						| 
							 | 
						            Attention pattern for each layer. | 
					
					
						
						| 
							 | 
						        attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout ratio for the attention probabilities. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    ```python | 
					
					
						
						| 
							 | 
						    >>> from transformers import OuroModel, OuroConfig | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a Ouro style configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = OuroConfig() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a model from the Ouro-7B style configuration | 
					
					
						
						| 
							 | 
						    >>> model = OuroModel(configuration) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Accessing the model configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = model.config | 
					
					
						
						| 
							 | 
						    ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_type = "ouro" | 
					
					
						
						| 
							 | 
						    keys_to_ignore_at_inference = ["past_key_values"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    base_model_tp_plan = { | 
					
					
						
						| 
							 | 
						        "layers.*.self_attn.q_proj": "colwise", | 
					
					
						
						| 
							 | 
						        "layers.*.self_attn.k_proj": "colwise", | 
					
					
						
						| 
							 | 
						        "layers.*.self_attn.v_proj": "colwise", | 
					
					
						
						| 
							 | 
						        "layers.*.self_attn.o_proj": "rowwise", | 
					
					
						
						| 
							 | 
						        "layers.*.mlp.gate_proj": "colwise", | 
					
					
						
						| 
							 | 
						        "layers.*.mlp.up_proj": "colwise", | 
					
					
						
						| 
							 | 
						        "layers.*.mlp.down_proj": "rowwise", | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    base_model_pp_plan = { | 
					
					
						
						| 
							 | 
						        "embed_tokens": (["input_ids"], ["inputs_embeds"]), | 
					
					
						
						| 
							 | 
						        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), | 
					
					
						
						| 
							 | 
						        "norm": (["hidden_states"], ["hidden_states"]), | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_size=151936, | 
					
					
						
						| 
							 | 
						        hidden_size=4096, | 
					
					
						
						| 
							 | 
						        intermediate_size=22016, | 
					
					
						
						| 
							 | 
						        num_hidden_layers=32, | 
					
					
						
						| 
							 | 
						        num_attention_heads=32, | 
					
					
						
						| 
							 | 
						        num_key_value_heads=32, | 
					
					
						
						| 
							 | 
						        hidden_act="silu", | 
					
					
						
						| 
							 | 
						        max_position_embeddings=32768, | 
					
					
						
						| 
							 | 
						        initializer_range=0.02, | 
					
					
						
						| 
							 | 
						        rms_norm_eps=1e-6, | 
					
					
						
						| 
							 | 
						        use_cache=True, | 
					
					
						
						| 
							 | 
						        tie_word_embeddings=False, | 
					
					
						
						| 
							 | 
						        rope_theta=10000.0, | 
					
					
						
						| 
							 | 
						        rope_scaling=None, | 
					
					
						
						| 
							 | 
						        use_sliding_window=False, | 
					
					
						
						| 
							 | 
						        sliding_window=4096, | 
					
					
						
						| 
							 | 
						        max_window_layers=28, | 
					
					
						
						| 
							 | 
						        layer_types=None, | 
					
					
						
						| 
							 | 
						        attention_dropout=0.0, | 
					
					
						
						| 
							 | 
						        total_ut_steps=4, | 
					
					
						
						| 
							 | 
						        early_exit_threshold=1.0, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.vocab_size = vocab_size | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = intermediate_size | 
					
					
						
						| 
							 | 
						        self.num_hidden_layers = num_hidden_layers | 
					
					
						
						| 
							 | 
						        self.num_attention_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						        self.use_sliding_window = use_sliding_window | 
					
					
						
						| 
							 | 
						        self.sliding_window = sliding_window if self.use_sliding_window else None | 
					
					
						
						| 
							 | 
						        self.max_window_layers = max_window_layers | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if num_key_value_heads is None: | 
					
					
						
						| 
							 | 
						            num_key_value_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.hidden_act = hidden_act | 
					
					
						
						| 
							 | 
						        self.initializer_range = initializer_range | 
					
					
						
						| 
							 | 
						        self.rms_norm_eps = rms_norm_eps | 
					
					
						
						| 
							 | 
						        self.use_cache = use_cache | 
					
					
						
						| 
							 | 
						        self.rope_theta = rope_theta | 
					
					
						
						| 
							 | 
						        self.rope_scaling = rope_scaling | 
					
					
						
						| 
							 | 
						        self.attention_dropout = attention_dropout | 
					
					
						
						| 
							 | 
						        self.total_ut_steps = total_ut_steps | 
					
					
						
						| 
							 | 
						        self.early_exit_threshold = early_exit_threshold | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.rope_scaling is not None and "type" in self.rope_scaling: | 
					
					
						
						| 
							 | 
						            self.rope_scaling["rope_type"] = self.rope_scaling["type"] | 
					
					
						
						| 
							 | 
						        rope_config_validation(self) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.layer_types = layer_types | 
					
					
						
						| 
							 | 
						        if self.layer_types is None: | 
					
					
						
						| 
							 | 
						            self.layer_types = [ | 
					
					
						
						| 
							 | 
						                "sliding_attention" | 
					
					
						
						| 
							 | 
						                if self.sliding_window is not None and i >= self.max_window_layers | 
					
					
						
						| 
							 | 
						                else "full_attention" | 
					
					
						
						| 
							 | 
						                for i in range(self.num_hidden_layers) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						        layer_type_validation(self.layer_types) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        super().__init__( | 
					
					
						
						| 
							 | 
						            tie_word_embeddings=tie_word_embeddings, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						__all__ = ["OuroConfig"] | 
					
					
						
						| 
							 | 
						
 |