Blue-skyyy commited on
Commit
dcbfe02
·
verified ·
1 Parent(s): 5f2f542

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ method.png filter=lfs diff=lfs merge=lfs -text
37
+ Results%20of%20VLM%20OC.png filter=lfs diff=lfs merge=lfs -text
38
+ Results%20of%20VLM%20OS.png filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
Notice.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Copyright (year) Bytedance Ltd. and/or its affiliates
README.md CHANGED
@@ -1,3 +1,148 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - zh
6
+ base_model:
7
+ - apple/aimv2-large-patch14-448
8
+ pipeline_tag: image-feature-extraction
9
+ tags:
10
+ - vision
11
+ - image-feature-extraction
12
+ - vlm
13
+ - pytorch
14
+ ---
15
+
16
+ # Introduction
17
+ [[`SAILViT Paper`](https://arxiv.org/abs/2507.01643)] [[`BibTeX`](#citation)]
18
+
19
+ We are pleased to announce the release of SAILViT, a series of versatile vision foundation models of our sota [SAIL-VL-1d6-8B](https://huggingface.co/BytedanceDouyinContent/SAIL-VL-1d6-8B) and [SAIL-VL-1d5-2B](https://huggingface.co/BytedanceDouyinContent/SAIL-VL-1.5-2B).
20
+ The core philosophy is to mitigate parameter initialization conflicts and modality semantic discrepancies among components by progressive learning before MLLMs perform target training. The main contributions are summarized as follows:
21
+
22
+ 1. SAILViT eliminates multimodal perception performance bottlenecks on sophisticated visual understanding for constructing more powerful MLLMs.
23
+ 2. We carefully design a training pipeline for gradual feature refinement, which accommodates different vision foundation models in a hierarchical and flexible optimization pattern, and achieves cross-modal alignment and integrated reinforcement of visual representations.
24
+ 3. We prove the robustness and generalizability of SAILViT via multi-dimensional analyses, including different parameter sizes, model architectures, training strategies, and data scales. SAILViT-Large outperforms the same-sized visual backbones by large margins on diverse tasks, while its Huge version assists MLLMs to achieve significant performance gains.
25
+ 4. Equipped with the SAILViT-Huge, our SAIL-VL-1d5-2B and SAIL-VL-1d6-8B achieve the #1 ranking in the publicly available OpenCompass Benchmark when compared to VLMs of the same size.
26
+
27
+ ## Training Recipes
28
+
29
+ We progressively inculcate hierarchical multimodal knowledge for the vision foundation model through three training stages in order to enhance visual representations and accomplish a seamless modality-semantic transition with LLMs.
30
+
31
+ <img src="method.png" alt="Training pipeline of SAILViT"/>
32
+
33
+ ## Model Zoo
34
+ | Architecture | Parameter | Patch Size | Resolution |
35
+ | --- | --- | --- | --- |
36
+ | [🤗SAILViT-Large-300M-448px](https://huggingface.co/BytedanceDouyinContent/SAILViT-Large-300M-448px) | 300M | 14 | 448x448 |
37
+ | [🤗SAILViT-Huge-600M-448px](https://huggingface.co/BytedanceDouyinContent/SAILViT-Large-300M-448px) | 600M | 14 | 448x448 |
38
+
39
+ ## Evaluation
40
+
41
+ ### MLLM Benchmarks
42
+ We compared SAILViT with other visual backbones connected with various LLMs on OpenCompass and OpenSource. The SAILViT series has significant performance gains on different families of LLMs.
43
+ #### OpenCompass
44
+ <!-- | LLM Series | Visual Backbones Series | Avg. | AI2D (test) | HallusionBench | MMBench (val) | MMMU (val) | MMVet | OCRBench | MMStar | MathVista (testmini) |
45
+ |--------------------|-------------------------------|------|-------------|----------------|----------------|------------|-------|----------|--------|----------------------|
46
+ | **InternLM2.5 Series** | | | | | | | | | | |
47
+ | InternLM2.5-1.8B | InternViT-300M-v2.5 | 49.9 | 69.27 | 33.35 | 65.98 | 35.11 | 29.59 | 713 | 47.80 | 47.1 |
48
+ | InternLM2.5-1.8B | AIMv2-Large (300M) | 51.2 | 71.53 | 33.02 | 66.45 | 35.33 | 32.34 | 729 | 49.93 | 48.0 |
49
+ | InternLM2.5-1.8B | SAILViT-Large | 52.4 | 73.09 | 35.32 | 67.80 | 36.78 | 34.40 | 716 | 50.80 | 49.3 |
50
+ | InternLM2.5-1.8B | AIMv2-Huge (600M) | 51.9 | 72.44 | 29.84 | 68.34 | 33.11 | 34.40 | 759 | 51.47 | 49.7 |
51
+ | InternLM2.5-1.8B | SAILViT-Huge (600M) | 54.4 | 73.19 | 37.62 | 70.16 | 36.89 | 37.16 | 757 | 53.20 | 51.2 |
52
+ | **Qwen2.5 Series** | | | | | | | | | | |
53
+ | Qwen2.5-1.5B | InternViT-300M-v2.5 | 52.2 | 64.02 | 33.56 | 69.16 | 41.56 | 38.72 | 725 | 48.33 | 50.0 |
54
+ | Qwen2.5-1.5B | AIMv2-Large (300M) | 54.6 | 75.29 | 33.73 | 70.94 | 40.56 | 37.16 | 749 | 53.33 | 50.8 |
55
+ | Qwen2.5-1.5B | SAILViT-Large | 56.9 | 76.20 | 40.93 | 71.94 | 41.89 | 38.99 | 772 | 53.89 | 53.9 |
56
+ | Qwen2.5-1.5B | AIMv2-Huge (600M) | 56.3 | 77.66 | 35.44 | 72.33 | 42.56 | 39.72 | 769 | 54.13 | 51.4 |
57
+ | Qwen2.5-1.5B | SAILViT-Huge (600M) | 57.7 | 78.27 | 37.91 | 73.99 | 43.44 | 40.55 | 795 | 55.60 | 52.1 |
58
+ | Qwen2.5-7B | InternViT-300M-v2.5 | 62.1 | 81.28 | 44.82 | 77.67 | 49.44 | 43.90 | 784 | 59.27 | 62.2 |
59
+ | Qwen2.5-7B | AIMv2-Large (300M) | 63.7 | 81.74 | 45.36 | 77.78 | 49.00 | 48.07 | 828 | 60.80 | 64.0 |
60
+ | Qwen2.5-7B | SAILViT-Large | 64.5 | 82.12 | 45.63 | 78.95 | 51.67 | 49.50 | 805 | 60.87 | 67.1 |
61
+ | Qwen2.5-7B | AIMv2-Huge (600M) | 64.2 | 81.44 | 44.04 | 80.30 | 50.78 | 46.10 | 815 | 62.33 | 67.4 |
62
+ | Qwen2.5-7B | SAILViT-Huge (600M) | 65.2 | 83.00 | 48.65 | 79.64 | 50.33 | 49.22 | 833 | 62.60 | 65.2 |
63
+ | **Qwen3 Series** | | | | | | | | | | |
64
+ | Qwen3-0.6B | AIMv2-Large (300M) | 51.7 | 71.37 | 38.92 | 65.52 | 35.11 | 33.07 | 703 | 49.80 | 49.2 |
65
+ | Qwen3-0.6B | SAILViT-Large (300M) | 52.9 | 71.05 | 41.05 | 64.86 | 36.67 | 34.77 | 741 | 50.93 | 49.4 |
66
+ | Qwen3-1.7B | AIMv2-Large (300M) | 56.3 | 77.49 | 39.76 | 71.28 | 42.78 | 39.17 | 751 | 53.40 | 51.4 |
67
+ | Qwen3-1.7B | SAILViT-Large (300M) | 58.1 | 78.82 | 41.84 | 71.44 | 42.56 | 43.21 | 790 | 54.80 | 52.8 |
68
+ | Qwen3-1.7B | AIMv2-Huge (600M) | 57.7 | 79.24 | 40.44 | 71.09 | 42.00 | 43.07 | 781 | 54.80 | 52.9 |
69
+ | Qwen3-1.7B | SAILViT-Huge (600M) | 59.4 | 79.89 | 41.23 | 74.19 | 43.11 | 44.31 | 806 | 56.93 | 54.9 |
70
+ | Qwen3-8B | AIMv2-Huge (600M) | 66.0 | 83.35 | 43.50 | 80.92 | 52.78 | 50.05 | 839 | 65.60 | 67.8 |
71
+ | Qwen3-8B | SAILViT-Huge (600M) | 66.6 | 84.17 | 48.23 | 81.89 | 51.78 | 46.83 | 857 | 65.13 | 69.4 | -->
72
+ <img src="Results of VLM OC.png" />
73
+
74
+ #### OpenSource
75
+ <img src="Results of VLM OS.png" />
76
+
77
+ ### Visual perception tasks
78
+ We conducted a comparison of SAILViT against other visual backbones in visual recognition tasks, specifically focusing on image classification. Under strictly fair experimental conditions, our findings show that SAILViT outperforms peer models of similar scale, such as Aimv2 and InternViT. Impressively, SAILViT-huge even matches the performance of InternViT-6B on challenging benchmarks like ImageNet-R and ImageNet-v2.
79
+
80
+ | Settings | AIMv2-Large | InternViT-300M-448px-V2.5 | SAILViT-Large | AIMv2-Huge | SAILViT-Huge | InternViT-6B-448px-V2.5 |
81
+ |--------------|-------------|---------------------------|---------------|------------|--------------|-------------------------|
82
+ | ImageNet-1k | 79.88% | 73.70% | 80.71% | 81.68% | 82.21% | 84.18% |
83
+ | ImageNet-A | 25.41% | 13.45% | 29.31% | 28.96% | 33.04% | 46.27% |
84
+ | ImageNet-R | 55.73% | 39.99% | 56.42% | 58.13% | 60.33% | 59.88% |
85
+ | ImageNet-V2 | 76.45% | 69.55% | 77.06% | 77.32% | 78.94% | 80.92% |
86
+ | Average | 59.37% | 49.17% | 60.87% | 61.52% | 63.63% | 67.81% |
87
+
88
+
89
+ ## Usage
90
+
91
+ ```python
92
+ import torch
93
+ import torchvision.transforms as T
94
+ from PIL import Image
95
+ import requests
96
+ from torchvision.transforms.functional import InterpolationMode
97
+ from transformers import AutoModel, AutoTokenizer
98
+
99
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
100
+ IMAGENET_STD = (0.229, 0.224, 0.225)
101
+ def build_transform(input_size):
102
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
103
+ transform = T.Compose([
104
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
105
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
106
+ T.ToTensor(),
107
+ T.Normalize(mean=MEAN, std=STD)
108
+ ])
109
+ return transform
110
+
111
+ path = "BytedanceDouyinContent/SAILViT-Large-300M-448px"
112
+ model = AutoModel.from_pretrained(
113
+ path,
114
+ torch_dtype=torch.bfloat16,
115
+ trust_remote_code=True).eval().cuda()
116
+
117
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
118
+ input_size = 448
119
+ image = Image.open(requests.get(url, stream=True).raw).convert('RGB')
120
+ transform = build_transform(input_size=input_size)
121
+ pixel_values = transform(image).unsqueeze(0).to(torch.bfloat16).cuda()
122
+ visual_tokens = model(pixel_values=pixel_values)
123
+
124
+ ```
125
+
126
+ ## Acknowledgments
127
+ Our model is built upon [Aimv2](https://huggingface.co/collections/apple/aimv2-6720fe1558d94c7805f7688c) and [Ovis2](https://huggingface.co/collections/AIDC-AI/ovis2-67ab36c7e497429034874464) and we are grateful for their contributions.
128
+
129
+
130
+ ## Citation
131
+ If you find our work useful, please consider citing us as :
132
+ ```bibtex
133
+ @misc{yin2025sailvitrobustgeneralizablevisual,
134
+ title={SAILViT: Towards Robust and Generalizable Visual Backbones for MLLMs via Gradual Feature Refinement},
135
+ author={Weijie Yin and Dingkang Yang and Hongyuan Dong and Zijian Kang and Jiacong Wang and Xiao Liang and Chao Feng and Jiao Ran},
136
+ year={2025},
137
+ eprint={2507.01643},
138
+ archivePrefix={arXiv},
139
+ primaryClass={cs.CV},
140
+ url={https://arxiv.org/abs/2507.01643},
141
+ }
142
+ ```
143
+
144
+ ## Licence
145
+ This project is licensed under [Apache License 2.0](LICENSE).
146
+
147
+ ## Contact
148
+ If you have any question, please feel free to contact us: [email protected]
Results%20of%20VLM%20OC.png ADDED

Git LFS Details

  • SHA256: adbad46b53627c06986c111d3af7afcc7144cff1cefa58d9e45ecda5f898751a
  • Pointer size: 131 Bytes
  • Size of remote file: 509 kB
Results%20of%20VLM%20OS.png ADDED

Git LFS Details

  • SHA256: 13f3ac646a4ba0f89a315c636c7606f1f18cea3acef3340a4bd9027e8e2950d9
  • Pointer size: 131 Bytes
  • Size of remote file: 482 kB
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SAILViTModel"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_sailvit.SAILViTConfig",
8
+ "AutoModel": "modeling_sailvit.SAILViTModel"
9
+ },
10
+ "hidden_size": 1536,
11
+ "image_size": 448,
12
+ "intermediate_size": 4096,
13
+ "model_type": "sailvit",
14
+ "num_attention_heads": 12,
15
+ "num_channels": 3,
16
+ "num_hidden_layers": 24,
17
+ "patch_size": 14,
18
+ "projection_dropout": 0.0,
19
+ "qkv_bias": false,
20
+ "rms_norm_eps": 1e-05,
21
+ "torch_dtype": "bfloat16",
22
+ "transformers_version": "4.45.1",
23
+ "use_bias": false
24
+ }
configuration_sailvit.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+ __all__ = ["SAILViTConfig"]
6
+
7
+
8
+ class SAILViTConfig(PretrainedConfig):
9
+ """This is the configuration class to store the configuration of an [`SAILViTModel`].
10
+
11
+ Instantiating a configuration with the defaults will yield a similar configuration
12
+ to that of the [apple/SAILViT-Huge-600M-448px](https://huggingface.co/BytedanceDouyinContent/SAILViT-Huge-600M-448px).
13
+
14
+ Args:
15
+ hidden_size: Dimension of the hidden representations.
16
+ intermediate_size: Dimension of the SwiGLU representations.
17
+ num_hidden_layers: Number of hidden layers in the Transformer.
18
+ num_attention_heads: Number of attention heads for each attention layer
19
+ in the Transformer.
20
+ num_channels: Number of input channels.
21
+ image_size: Image size.
22
+ patch_size: Patch size.
23
+ rms_norm_eps: Epsilon value used for the RMS normalization layer.
24
+ attention_dropout: Dropout ratio for attention probabilities.
25
+ projection_dropout: Dropout ratio for the projection layer after the attention.
26
+ qkv_bias: Whether to add a bias to the queries, keys and values.
27
+ use_bias: Whether to add a bias in the feed-forward and projection layers.
28
+ kwargs: Keyword arguments for the [`PretrainedConfig`].
29
+ """
30
+
31
+ model_type: str = "sailvit"
32
+
33
+ def __init__(
34
+ self,
35
+ hidden_size: int = 1024,
36
+ intermediate_size: int = 2816,
37
+ num_hidden_layers: int = 24,
38
+ num_attention_heads: int = 8,
39
+ num_channels: int = 3,
40
+ image_size: int = 224,
41
+ patch_size: int = 14,
42
+ rms_norm_eps: float = 1e-5,
43
+ attention_dropout: float = 0.0,
44
+ projection_dropout: float = 0.0,
45
+ qkv_bias: bool = False,
46
+ use_bias: bool = False,
47
+ **kwargs: Any,
48
+ ):
49
+ super().__init__(**kwargs)
50
+ self.hidden_size = hidden_size
51
+ self.intermediate_size = intermediate_size
52
+ self.num_hidden_layers = num_hidden_layers
53
+ self.num_attention_heads = num_attention_heads
54
+ self.num_channels = num_channels
55
+ self.patch_size = patch_size
56
+ self.image_size = image_size
57
+ self.attention_dropout = attention_dropout
58
+ self.rms_norm_eps = rms_norm_eps
59
+
60
+ self.projection_dropout = projection_dropout
61
+ self.qkv_bias = qkv_bias
62
+ self.use_bias = use_bias
method.png ADDED

Git LFS Details

  • SHA256: 67589376bffe9dd6ef753dc1a7764a870acadc6a1a632453145d5c1761a74ab5
  • Pointer size: 131 Bytes
  • Size of remote file: 382 kB
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cef10930416041c4741c3c14ac226941b66f1ee4484cc495bf1160d767f67c1
3
+ size 1364081528
modeling_sailvit.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adapted from https://huggingface.co/apple/aimv2-huge-patch14-448 (modification: add gradient checkpoint support)
2
+ from typing import Optional, Tuple, Union
3
+
4
+ import torch
5
+ from .configuration_sailvit import SAILViTConfig
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+ from transformers.modeling_outputs import BaseModelOutputWithNoAttention
9
+ from transformers.modeling_utils import PreTrainedModel
10
+
11
+ __all__ = ["SAILViTModel"]
12
+
13
+
14
+ class RMSNorm(nn.Module):
15
+ def __init__(self, dim: int, eps: float = 1e-6):
16
+ super().__init__()
17
+ self.weight = nn.Parameter(torch.ones(dim))
18
+ self.eps = eps
19
+
20
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
21
+ output = self._norm(x.float()).type_as(x)
22
+ return output * self.weight
23
+
24
+ def extra_repr(self) -> str:
25
+ return f"{tuple(self.weight.shape)}, eps={self.eps}"
26
+
27
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
28
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
29
+
30
+
31
+ class SAILViTSwiGLUFFN(nn.Module):
32
+ def __init__(self, config: SAILViTConfig):
33
+ super().__init__()
34
+ hidden_features = config.intermediate_size
35
+ in_features = config.hidden_size
36
+ bias = config.use_bias
37
+
38
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
39
+ self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
40
+ self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
41
+
42
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
43
+ x = F.silu(self.fc1(x)) * self.fc3(x)
44
+ x = self.fc2(x)
45
+ return x
46
+
47
+
48
+ class SAILViTPatchEmbed(nn.Module):
49
+ def __init__(self, config: SAILViTConfig):
50
+ super().__init__()
51
+ self.proj = nn.Conv2d(
52
+ config.num_channels,
53
+ config.hidden_size,
54
+ kernel_size=(config.patch_size, config.patch_size),
55
+ stride=(config.patch_size, config.patch_size),
56
+ )
57
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
58
+
59
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
60
+ x = self.proj(x).flatten(2).transpose(1, 2)
61
+ x = self.norm(x)
62
+ return x
63
+
64
+
65
+ class SAILViTPreprocessor(nn.Module):
66
+ def __init__(self, config: SAILViTConfig):
67
+ super().__init__()
68
+ num_patches = (config.image_size // config.patch_size) ** 2
69
+
70
+ self.patchifier = SAILViTPatchEmbed(config)
71
+ self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))
72
+
73
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
74
+ tokens = self.patchifier(x)
75
+ _, N, _ = tokens.shape
76
+ pos_embed = self.pos_embed.to(tokens.device)
77
+ tokens = tokens + pos_embed[:, :N]
78
+ return tokens
79
+
80
+
81
+ class SAILViTAttention(nn.Module):
82
+ def __init__(self, config: SAILViTConfig):
83
+ super().__init__()
84
+ dim = config.hidden_size
85
+
86
+ self.num_heads = config.num_attention_heads
87
+ self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
88
+ self.attn_drop = nn.Dropout(config.attention_dropout)
89
+ self.proj = nn.Linear(dim, dim, bias=config.use_bias)
90
+ self.proj_drop = nn.Dropout(config.projection_dropout)
91
+
92
+ def forward(
93
+ self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
94
+ ) -> torch.Tensor:
95
+ B, N, C = x.shape
96
+ qkv = (
97
+ self.qkv(x)
98
+ .reshape(B, N, 3, self.num_heads, C // self.num_heads)
99
+ .permute(2, 0, 3, 1, 4)
100
+ )
101
+ q, k, v = qkv.unbind(0)
102
+
103
+ x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
104
+ x = x.transpose(1, 2).contiguous().reshape(B, N, C)
105
+ x = self.proj(x)
106
+ x = self.proj_drop(x)
107
+ return x
108
+
109
+
110
+ class SAILViTBlock(nn.Module):
111
+ def __init__(self, config: SAILViTConfig):
112
+ super().__init__()
113
+ self.attn = SAILViTAttention(config)
114
+ self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
115
+ self.mlp = SAILViTSwiGLUFFN(config)
116
+ self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
117
+
118
+ def forward(
119
+ self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
120
+ ) -> torch.Tensor:
121
+ x = x + self.attn(self.norm_1(x), mask)
122
+ x = x + self.mlp(self.norm_2(x))
123
+ return x
124
+
125
+
126
+ class SAILViTTransformer(nn.Module):
127
+ def __init__(self, config: SAILViTConfig):
128
+ super().__init__()
129
+ self.blocks = nn.ModuleList(
130
+ [SAILViTBlock(config) for _ in range(config.num_hidden_layers)]
131
+ )
132
+ self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
133
+ self.gradient_checkpointing = False
134
+
135
+ def forward(
136
+ self,
137
+ tokens: torch.Tensor,
138
+ mask: Optional[torch.Tensor] = None,
139
+ output_hidden_states: bool = False,
140
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
141
+ hidden_states = () if output_hidden_states else None
142
+ for block in self.blocks:
143
+ if self.gradient_checkpointing and self.training:
144
+ tokens = self._gradient_checkpointing_func(block.__call__, tokens, mask)
145
+ else:
146
+ tokens = block(tokens, mask)
147
+ if output_hidden_states:
148
+ hidden_states += (tokens,)
149
+ tokens = self.post_trunk_norm(tokens)
150
+ return tokens, hidden_states
151
+
152
+
153
+ class SAILViTPretrainedModel(PreTrainedModel):
154
+ config_class = SAILViTConfig
155
+ base_model_prefix = "sailvit"
156
+ supports_gradient_checkpointing = True
157
+ main_input_name = "pixel_values"
158
+ _no_split_modules = ["SAILViTPreprocessor", "SAILViTBlock"]
159
+ _supports_sdpa = True
160
+
161
+
162
+ class SAILViTModel(SAILViTPretrainedModel):
163
+ def __init__(self, config: SAILViTConfig):
164
+ super().__init__(config)
165
+ self.preprocessor = SAILViTPreprocessor(config)
166
+ self.trunk = SAILViTTransformer(config)
167
+
168
+ def forward(
169
+ self,
170
+ pixel_values: torch.Tensor,
171
+ mask: Optional[torch.Tensor] = None,
172
+ output_hidden_states: Optional[bool] = None,
173
+ return_dict: Optional[bool] = None,
174
+ ) -> Union[
175
+ Tuple[torch.Tensor],
176
+ Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
177
+ BaseModelOutputWithNoAttention,
178
+ ]:
179
+ if output_hidden_states is None:
180
+ output_hidden_states = self.config.output_hidden_states
181
+ if return_dict is None:
182
+ return_dict = self.config.use_return_dict
183
+
184
+ x = self.preprocessor(pixel_values)
185
+ x, hidden_states = self.trunk(
186
+ x, mask, output_hidden_states=output_hidden_states
187
+ )
188
+
189
+ if not return_dict:
190
+ res = (x,)
191
+ res += (hidden_states,) if output_hidden_states else ()
192
+ return res
193
+
194
+ return BaseModelOutputWithNoAttention(
195
+ last_hidden_state=x,
196
+ hidden_states=hidden_states,
197
+ )
198
+