C10X commited on
Commit
0595c45
·
verified ·
1 Parent(s): 5f8e30c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen3-Embedding-8B
3
+ library_name: model2vec
4
+ license: mit
5
+ model_name: m2v_model
6
+ tags:
7
+ - embeddings
8
+ - static-embeddings
9
+ - sentence-transformers
10
+ ---
11
+
12
+ # m2v_model Model Card
13
+
14
+ This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of the Qwen/Qwen3-Embedding-8B(https://huggingface.co/Qwen/Qwen3-Embedding-8B) Sentence Transformer. It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical. Model2Vec models are the smallest, fastest, and most performant static embedders available. The distilled models are up to 50 times smaller and 500 times faster than traditional Sentence Transformers.
15
+
16
+
17
+ ## Installation
18
+
19
+ Install model2vec using pip:
20
+ ```
21
+ pip install model2vec
22
+ ```
23
+
24
+ ## Usage
25
+
26
+ ### Using Model2Vec
27
+
28
+ The [Model2Vec library](https://github.com/MinishLab/model2vec) is the fastest and most lightweight way to run Model2Vec models.
29
+
30
+ Load this model using the `from_pretrained` method:
31
+ ```python
32
+ from model2vec import StaticModel
33
+
34
+ # Load a pretrained Model2Vec model
35
+ model = StaticModel.from_pretrained("m2v_model")
36
+
37
+ # Compute text embeddings
38
+ embeddings = model.encode(["Example sentence"])
39
+ ```
40
+
41
+ ### Using Sentence Transformers
42
+
43
+ You can also use the [Sentence Transformers library](https://github.com/UKPLab/sentence-transformers) to load and use the model:
44
+
45
+ ```python
46
+ from sentence_transformers import SentenceTransformer
47
+
48
+ # Load a pretrained Sentence Transformer model
49
+ model = SentenceTransformer("m2v_model")
50
+
51
+ # Compute text embeddings
52
+ embeddings = model.encode(["Example sentence"])
53
+ ```
54
+
55
+ ### Distilling a Model2Vec model
56
+
57
+ You can distill a Model2Vec model from a Sentence Transformer model using the `distill` method. First, install the `distill` extra with `pip install model2vec[distill]`. Then, run the following code:
58
+
59
+ ```python
60
+ from model2vec.distill import distill
61
+
62
+ # Distill a Sentence Transformer model, in this case the BAAI/bge-base-en-v1.5 model
63
+ m2v_model = distill(model_name="BAAI/bge-base-en-v1.5", pca_dims=256)
64
+
65
+ # Save the model
66
+ m2v_model.save_pretrained("m2v_model")
67
+ ```
68
+
69
+ ## How it works
70
+
71
+ Model2vec creates a small, fast, and powerful model that outperforms other static embedding models by a large margin on all tasks we could find, while being much faster to create than traditional static embedding models such as GloVe. Best of all, you don't need any data to distill a model using Model2Vec.
72
+
73
+ It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx). During inference, we simply take the mean of all token embeddings occurring in a sentence.
74
+
75
+ ## Additional Resources
76
+
77
+ - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
78
+ - [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
79
+ - [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
80
+ - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
81
+ - [Website](https://minishlab.github.io/)
82
+
83
+
84
+ ## Library Authors
85
+
86
+ Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
87
+
88
+ ## Citation
89
+
90
+ Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
91
+ ```
92
+ @article{minishlab2024model2vec,
93
+ author = {Tulkens, Stephan and {van Dongen}, Thomas},
94
+ title = {Model2Vec: Fast State-of-the-Art Static Embeddings},
95
+ year = {2024},
96
+ url = {https://github.com/MinishLab/model2vec}
97
+ }
98
+ ```