File size: 31,987 Bytes
b9d3a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
tags:
- code
- language
- granite-3.2
base_model:
- ibm-granite/granite-3.2-8b-instruct
model_creator: ibm-granite
model_name: granite-3.2-8b-instruct
model_type: granite
datasets:
- m-a-p/CodeFeedback-Filtered-Instruction
quantized_by: CISC
---

# granite-3.2-8b-instruct - SOTA GGUF
- Model creator: [IBM](https://huggingface.co/ibm-granite)
- Original model: [granite-3.2-8b-instruct](https://huggingface.co/ibm-granite/granite-3.2-8b-instruct)

<!-- description start -->
## Description

This repo contains State Of The Art quantized GGUF format model files for [granite-3.2-8b-instruct](https://huggingface.co/ibm-granite/granite-3.2-8b-instruct).

Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of answers from the [CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) dataset.

Fill-in-Middle tokens are automatically detected and supported as of commit [0d2ec43](https://github.com/ggerganov/llama.cpp/commit/11ac9800aff532715a5bc7991062c68ba3472e6e), see [example](#simple-llama-cpp-python-example-fill-in-middle-code).

<!-- description end -->

<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUFv3 files are compatible with llama.cpp from September 17th 2024 onwards, as of commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0d2ec438330271d201c2e9224aca23d0d5c908bf)

They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.

Usage with llama-cpp-python based frameworks require [PR#1486](https://github.com/abetlen/llama-cpp-python/pull/1486) patched in for the chat template to work correctly.

## Explanation of quantisation methods

<details>
  <summary>Click to see details</summary>

The new methods available are:

* GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
* GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
* GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
* GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
* GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
* GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
* GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
* GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
* GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
* GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
* GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
* GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [granite-3.2-8b-instruct.IQ1_S.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ1_S.gguf) | IQ1_S | 1 | 1.7 GB| 1.9 GB | smallest, significant quality loss |
| [granite-3.2-8b-instruct.IQ1_M.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ1_M.gguf) | IQ1_M | 1 | 1.8 GB| 2.1 GB | very small, significant quality loss |
| [granite-3.2-8b-instruct.IQ2_XXS.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ2_XXS.gguf) | IQ2_XXS | 2 | 2.1 GB| 2.3 GB | very small, high quality loss |
| [granite-3.2-8b-instruct.IQ2_XS.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ2_XS.gguf) | IQ2_XS | 2 | 2.3 GB| 2.5 GB | very small, high quality loss |
| [granite-3.2-8b-instruct.IQ2_S.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ2_S.gguf) | IQ2_S | 2 | 2.4 GB| 2.7 GB | small, substantial quality loss |
| [granite-3.2-8b-instruct.IQ2_M.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ2_M.gguf) | IQ2_M | 2 | 2.6 GB| 2.9 GB | small, greater quality loss |
| [granite-3.2-8b-instruct.IQ3_XXS.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ3_XXS.gguf) | IQ3_XXS | 3 | 3.0 GB| 3.2 GB | very small, high quality loss |
| [granite-3.2-8b-instruct.IQ3_XS.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ3_XS.gguf) | IQ3_XS | 3 | 3.2 GB| 3.4 GB | small, substantial quality loss |
| [granite-3.2-8b-instruct.IQ3_S.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ3_S.gguf) | IQ3_S | 3 | 3.4 GB| 3.6 GB | small, greater quality loss |
| [granite-3.2-8b-instruct.IQ3_M.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ3_M.gguf) | IQ3_M | 3 | 3.5 GB| 3.7 GB | medium, balanced quality - recommended |
| [granite-3.2-8b-instruct.IQ4_XS.gguf](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.IQ4_XS.gguf) | IQ4_XS | 4 | 4.1 GB| 4.3 GB | small, substantial quality loss |

Generated importance matrix file: [granite-3.2-8b-instruct.imatrix.dat](https://huggingface.co/CISCai/granite-3.2-8b-instruct-SOTA-GGUF/blob/main/granite-3.2-8b-instruct.imatrix.dat)

**Note**: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [6171c9d](https://github.com/ggerganov/llama.cpp/commit/6171c9d25820ccf676b243c172868819d882848f) or later for jinja2 chat template support.

```shell
./llama-cli -ngl 41 -m granite-3.2-8b-instruct.IQ4_XS.gguf --color -c 131072 -cnv --jinja"
```

Change `-ngl 41` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 131072` to the desired sequence length.

If you are low on V/RAM try quantizing the K-cache with `-ctk q8_0` or even `-ctk q4_0` for big memory savings (depending on context size).
There is a similar option for V-cache (`-ctv`), only available if you enable Flash Attention (`-fa`) as well.

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) module.

### How to load this model in Python code, using llama-cpp-python

For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).

#### First install the package

Run one of the following commands, according to your system:

```shell
# Prebuilt wheel with basic CPU support
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# Prebuilt wheel with NVidia CUDA acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
# Prebuilt wheel with Metal GPU acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
# Build base version with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DGGML_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DGGML_METAL=on" pip install llama-cpp-python
# Or with Vulkan acceleration
CMAKE_ARGS="-DGGML_VULKAN=on" pip install llama-cpp-python
# Or with SYCL acceleration
CMAKE_ARGS="-DGGML_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python

# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DGGML_CUDA=on"
pip install llama-cpp-python
```

#### Simple llama-cpp-python example code

```python
from llama_cpp import Llama

# Chat Completion API

llm = Llama(model_path="./granite-3.2-8b-instruct.IQ4_XS.gguf", n_gpu_layers=41, n_ctx=131072)
print(llm.create_chat_completion(
    repeat_penalty = 1.0,
    messages = [
        {
            "role": "user",
            "content": "Pick a LeetCode challenge and solve it in Python."
        }
    ]
))
```

#### Simple llama-cpp-python example fill-in-middle code

```python
from llama_cpp import Llama

# Completion API

prompt = "def add("
suffix = "\n    return sum\n\n"

llm = Llama(model_path="./granite-3.2-8b-instruct.IQ4_XS.gguf", n_gpu_layers=41, n_ctx=131072)
output = llm.create_completion(
    temperature = 0.0,
    repeat_penalty = 1.0,
    prompt = prompt,
    suffix = suffix
)

# Models sometimes repeat suffix in response, attempt to filter that
response = output["choices"][0]["text"]
response_stripped = response.rstrip()
unwanted_response_suffix = suffix.rstrip()
unwanted_response_length = len(unwanted_response_suffix)

filtered = False
if unwanted_response_suffix and response_stripped[-unwanted_response_length:] == unwanted_response_suffix:
    response = response_stripped[:-unwanted_response_length]
    filtered = True

print(f"Fill-in-Middle completion{' (filtered)' if filtered else ''}:\n\n{prompt}\033[32m{response}\033[{'33' if filtered else '0'}m{suffix}\033[0m")
```

#### Simple llama-cpp-python example function calling code

```python
from llama_cpp import Llama

# Chat Completion API

grammar = LlamaGrammar.from_json_schema(json.dumps({
    "type": "array",
    "items": {
        "type": "object",
        "required": [ "name", "arguments" ],
        "properties": {
            "name": {
                "type": "string"
            },
            "arguments": {
                "type": "object"
            }
        }
    }
}))

llm = Llama(model_path="./granite-3.2-8b-instruct.IQ4_XS.gguf", n_gpu_layers=41, n_ctx=131072)
response = llm.create_chat_completion(
      temperature = 0.0,
      repeat_penalty = 1.0,
      messages = [
        {
          "role": "user",
          "content": "What's the weather like in Oslo and Stockholm?"
        }
      ],
      tools=[{
        "type": "function",
        "function": {
          "name": "get_current_weather",
          "description": "Get the current weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA"
              },
              "unit": {
                "type": "string",
                "enum": [ "celsius", "fahrenheit" ]
              }
            },
            "required": [ "location" ]
          }
        }
      }],
      grammar = grammar
)
print(json.loads(response["choices"][0]["text"]))

print(llm.create_chat_completion(
      temperature = 0.0,
      repeat_penalty = 1.0,
      messages = [
        {
          "role": "user",
          "content": "What's the weather like in Oslo?"
        },
        { # The tool_calls is from the response to the above with tool_choice active
          "role": "assistant",
          "content": None,
          "tool_calls": [
            {
              "id": "call__0_get_current_weather_cmpl-...",
              "type": "function",
              "function": {
                "name": "get_current_weather",
                "arguments": { "location": "Oslo, Norway" , "unit": "celsius" }
              }
            }
          ]
        },
        { # The tool_call_id is from tool_calls and content is the result from the function call you made
          "role": "tool",
          "content": "20",
          "tool_call_id": "call__0_get_current_weather_cmpl-..."
        }
      ],
      tools=[{
        "type": "function",
        "function": {
          "name": "get_current_weather",
          "description": "Get the current weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA"
              },
              "unit": {
                "type": "string",
                "enum": [ "celsius", "fahrenheit" ]
              }
            },
            "required": [ "location" ]
          }
        }
      }],
      #tool_choice={
      #  "type": "function",
      #  "function": {
      #    "name": "get_current_weather"
      #  }
      #}
))
```

<!-- README_GGUF.md-how-to-run end -->

<!-- original-model-card start -->
# Granite-3.2-8B-Instruct

**Model Summary:**
Granite-3.2-8B-Instruct is an 8-billion-parameter, long-context AI model fine-tuned for thinking capabilities. Built on top of [Granite-3.1-8B-Instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct), it has been trained using a mix of permissively licensed open-source datasets and internally generated synthetic data designed for reasoning tasks. The model allows controllability of its thinking capability, ensuring it is applied only when required.


- **Developers:** Granite Team, IBM
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Release Date**: February 26th, 2025
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)

**Supported Languages:** 
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. However, users may finetune this Granite model for languages beyond these 12 languages.

**Intended Use:** 
This model is designed to handle general instruction-following tasks and can be integrated into AI assistants across various domains, including business applications.

**Capabilities**
* **Thinking**
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related tasks
* Function-calling tasks
* Multilingual dialog use cases
* Long-context tasks including long document/meeting summarization, long document QA, etc.



**Generation:** 
This is a simple example of how to use Granite-3.2-8B-Instruct model.

Install the following libraries:

```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
```
Then, copy the snippet from the section that is relevant for your use case.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
import torch

model_path="ibm-granite/granite-3.2-8b-instruct"
device="cuda"
model = AutoModelForCausalLM.from_pretrained(
        model_path,
        device_map=device,
        torch_dtype=torch.bfloat16,
    )
tokenizer = AutoTokenizer.from_pretrained(
        model_path
)

conv = [{"role": "user", "content":"You have 10 liters of a 30% acid solution. How many liters of a 70% acid solution must be added to achieve a 50% acid mixture?"}]

input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device)

set_seed(42)
output = model.generate(
    **input_ids,
    max_new_tokens=8192,
)

prediction = tokenizer.decode(output[0, input_ids["input_ids"].shape[1]:], skip_special_tokens=True)
print(prediction)
```

**Example Outputs**
- thinking=True
```md
Here is my thought process:

1. We know we start with 10 liters of a 30% acid solution, so there's 3 liters of pure acid in it (10 liters * 0.3).
2. We need to determine how much of the 70% acid solution to add such that the final mixture is 50% acid.
3. Let's say x liters of the 70% acid solution are added. This will contribute 0.7x liters of pure acid.
4. The total volume of the new mixture will be 10 + x liters, and the total amount of pure acid will be 3 + 0.7x liters.
5. We need to set up an equation where (3 + 0.7x) / (10 + x) = 0.5 (since we want a 50% acid mixture).
6. Solving this equation for x will give us the volume of 70% solution needed.

Here is my response:

To solve this, we need to set up an equation based on the concentration of acid before and after mixing. 

1. **Initial Acid Content**: 
   - We start with 10 liters of a 30% acid solution. 
   - Pure acid in this = 10 * 0.3 = 3 liters.

2. **Variable for Addition**:
   - Let x be the liters of 70% acid solution to be added.
   - Pure acid in x liters of 70% solution = 0.7x liters.

3. **Final Mixture Concentration**:
   - Total volume of mixture = 10 + x liters.
   - Total pure acid in the mixture = 3 (from initial solution) + 0.7x (from added solution).

4. **Setting up the equation for 50% acid concentration**:
   - We require that the ratio of pure acid to total volume is 0.5 (50%).
   - Therefore, the equation is:

   \[
   \frac{3 + 0.7x}{10 + x} = 0.5
   \]

5. **Solving the equation**:

   Multiply both sides by (10 + x) to clear the fraction:

   \[
   3 + 0.7x = 0.5(10 + x)
   \]

   Expanding the right side:

   \[
   3 + 0.7x = 5 + 0.5x
   \]

   Subtract 0.5x from both sides:

   \[
   3 + 0.2x = 5
   \]

   Subtract 3 from both sides:

   \[
   0.2x = 2
   \]

   Divide by 0.2:

   \[
   x = 10
   \]

So, 10 liters of the 70% acid solution must be added to the initial 10 liters of 30% solution to get a 50% acid mixture. 

Let's verify: 

- Initial acid: 3 liters
- Acid from added solution: 0.7 * 10 = 7 liters
- Total acid: 3 + 7 = 10 liters
- Total volume: 10 + 10 = 20 liters
- Acid percentage: \(\frac{10}{20} = 0.5 = 50\%\)

This confirms our solution. 

Final answer: 10 liters of 70% acid solution should be added.
```
- thinking=False
```md
Let's denote the amount of 70% acid solution to be added as x liters.

We start with 10 liters of a 30% acid solution, which means there are 0.3 * 10 = 3 liters of pure acid in it.

We want to end up with a 50% acid solution after adding x liters of 70% acid solution. The total volume of the mixture will be 10 + x liters, and we want half of this volume to be pure acid.

So, the amount of pure acid in the final mixture should be 0.5 * (10 + x) liters.

The amount of pure acid in the final mixture comes from two sources: the original 30% solution and the added 70% solution. So, we can set up the following equation:

3 (from the original solution) + 0.7x (from the added solution) = 0.5 * (10 + x)

Now, let's solve for x:

3 + 0.7x = 5 + 0.5x
0.7x - 0.5x = 5 - 3
0.2x = 2
x = 2 / 0.2
x = 10

So, you need to add 10 liters of a 70% acid solution to the 10 liters of a 30% acid solution to get a 50% acid mixture.
```

**Evaluation Results:**
<table>
  
<thead>
  <tr>
    <th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">ArenaHard</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">Alpaca-Eval-2</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">PopQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">BigBenchHard</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">DROP</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">HumanEval</th>
   <th style="text-align:center; background-color: #001d6c; color: white;">HumanEval+</th>
  <th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
    <th style="text-align:center; background-color: #001d6c; color: white;">AttaQ</th>
  </tr></thead>
  <tbody>
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Llama-3.1-8B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">36.43</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">27.22</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">69.15</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">28.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">52.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">72.66</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">61.48</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">83.24</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.32</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">80.15</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">79.10</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">83.43</td>
  </tr>
           
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">DeepSeek-R1-Distill-Llama-8B</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">17.17</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">21.85</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">45.80</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">13.25</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">47.43</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">65.71</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">44.46</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">72.18</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">67.54</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">62.91</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">66.50</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">42.87</td>
  </tr>
      
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Qwen-2.5-7B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">25.44</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">30.34</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">74.30</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">18.12</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">63.06</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">70.40</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">54.71</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">84.46</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">93.35</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">89.91</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">74.90</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">81.90</td>
  </tr>
      
  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">DeepSeek-R1-Distill-Qwen-7B</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">10.36</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">15.35</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">50.72</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">9.94</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">47.14</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">65.04</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">42.76</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">78.47</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">79.89</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">78.43</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">59.10</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">42.45</td>
  </tr>

  <tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-8B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">37.58</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">30.34</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">66.77</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">28.7</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">65.84</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">68.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">50.78</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">79.15</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">89.63</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">73.20</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.73</td>
  </tr>
      
      
<tr>
    <td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.1-2B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">23.3</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">27.17</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">57.11</td> 
    <td style="text-align:center; background-color: #DAE8FF; color: black;">20.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">59.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">54.46</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">18.68</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">67.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">79.45</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">75.26</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">63.59</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">84.7</td>
  </tr>
      
 
  <tr>
      <td style="text-align:left; background-color: #DAE8FF; color: black;">Granite-3.2-2B-Instruct</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">24.86</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">34.51</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">57.18</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">20.56</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">59.8</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">52.27</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">21.12</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">67.02</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">80.13</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">73.39</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">61.55</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">83.23</td>
  </tr> 
      
<tr>
      <td style="text-align:left; background-color: #DAE8FF; color: black;"><b>Granite-3.2-8B-Instruct</b></td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">55.25</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">61.19</td>
   <td style="text-align:center; background-color: #DAE8FF; color: black;">66.79</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">28.04</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">66.92</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">64.77</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">50.95</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">81.65</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">89.35</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.72</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">74.31</td>
    <td style="text-align:center; background-color: #DAE8FF; color: black;">85.42</td>
 
  </tr>

     
      
</tbody></table>

**Training Data:** 
Overall, our training data is largely comprised of two key sources: (1) publicly available datasets with permissive license, (2) internal synthetically generated data targeted to enhance reasoning capabilites. 
<!-- A detailed attribution of datasets can be found in [Granite 3.2 Technical Report (coming soon)](#), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf). -->

**Infrastructure:**
We train Granite-3.2-8B-Instruct using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.

**Ethical Considerations and Limitations:** 
Granite-3.2-8B-Instruct builds upon Granite-3.1-8B-Instruct, leveraging both permissively licensed open-source and select proprietary data for enhanced performance. Since it inherits its foundation from the previous model, all ethical considerations and limitations applicable to [Granite-3.1-8B-Instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) remain relevant.


**Resources**
- ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite
- 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/
- 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources

<!-- ## Citation
```
@misc{granite-models,
  author = {author 1, author2, ...},
  title = {},
  journal = {},
  volume = {},
  year = {2024},
  url = {https://arxiv.org/abs/0000.00000},
}
``` -->