update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- simplification
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: marimari-r2r-mlsum-clara-med
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# marimari-r2r-mlsum-clara-med
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [IIC/marimari-r2r-mlsum](https://huggingface.co/IIC/marimari-r2r-mlsum) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 3.9276
|
20 |
+
- Rouge1: 43.1543
|
21 |
+
- Rouge2: 24.9453
|
22 |
+
- Rougel: 37.4907
|
23 |
+
- Rougelsum: 37.6959
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5.6e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 30
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
54 |
+
| No log | 1.0 | 190 | 2.3405 | 42.5983 | 25.1109 | 37.6327 | 37.7257 |
|
55 |
+
| No log | 2.0 | 380 | 2.2954 | 41.9792 | 23.9766 | 36.3881 | 36.5226 |
|
56 |
+
| 1.976 | 3.0 | 570 | 2.4302 | 42.0317 | 23.9135 | 36.186 | 36.3812 |
|
57 |
+
| 1.976 | 4.0 | 760 | 2.7029 | 41.7418 | 23.7318 | 36.2048 | 36.3403 |
|
58 |
+
| 0.6481 | 5.0 | 950 | 2.9547 | 41.2054 | 22.9037 | 35.1364 | 35.3168 |
|
59 |
+
| 0.6481 | 6.0 | 1140 | 3.1709 | 41.0444 | 23.2019 | 35.7206 | 35.8829 |
|
60 |
+
| 0.6481 | 7.0 | 1330 | 3.2556 | 41.3295 | 22.6827 | 35.2777 | 35.4701 |
|
61 |
+
| 0.1485 | 8.0 | 1520 | 3.3117 | 41.068 | 22.965 | 35.5507 | 35.6491 |
|
62 |
+
| 0.1485 | 9.0 | 1710 | 3.4171 | 41.5945 | 23.6423 | 35.8899 | 36.0442 |
|
63 |
+
| 0.0725 | 10.0 | 1900 | 3.4981 | 41.1163 | 23.0651 | 35.6205 | 35.6596 |
|
64 |
+
| 0.0725 | 11.0 | 2090 | 3.5086 | 40.9784 | 22.9125 | 35.182 | 35.5205 |
|
65 |
+
| 0.0725 | 12.0 | 2280 | 3.5503 | 41.6038 | 23.3975 | 36.0071 | 36.2095 |
|
66 |
+
| 0.0425 | 13.0 | 2470 | 3.6113 | 42.0039 | 24.0294 | 36.4882 | 36.6313 |
|
67 |
+
| 0.0425 | 14.0 | 2660 | 3.6253 | 41.3012 | 23.1452 | 35.5444 | 35.761 |
|
68 |
+
| 0.0291 | 15.0 | 2850 | 3.6247 | 42.1477 | 24.3389 | 36.4346 | 36.6004 |
|
69 |
+
| 0.0291 | 16.0 | 3040 | 3.6683 | 42.6205 | 24.3544 | 36.776 | 36.9848 |
|
70 |
+
| 0.0291 | 17.0 | 3230 | 3.7544 | 41.9877 | 24.069 | 36.6296 | 36.9115 |
|
71 |
+
| 0.0166 | 18.0 | 3420 | 3.7562 | 41.8586 | 23.6088 | 36.271 | 36.4634 |
|
72 |
+
| 0.0166 | 19.0 | 3610 | 3.7687 | 43.2161 | 25.0204 | 37.5484 | 37.759 |
|
73 |
+
| 0.0088 | 20.0 | 3800 | 3.7907 | 42.8482 | 24.8476 | 37.1841 | 37.4456 |
|
74 |
+
| 0.0088 | 21.0 | 3990 | 3.8260 | 42.3613 | 24.3827 | 36.6921 | 36.8898 |
|
75 |
+
| 0.0088 | 22.0 | 4180 | 3.8367 | 42.6367 | 24.6803 | 37.0963 | 37.3301 |
|
76 |
+
| 0.0039 | 23.0 | 4370 | 3.8613 | 42.8326 | 25.0972 | 37.4584 | 37.6063 |
|
77 |
+
| 0.0039 | 24.0 | 4560 | 3.8716 | 43.043 | 24.7042 | 37.4917 | 37.6845 |
|
78 |
+
| 0.0028 | 25.0 | 4750 | 3.8881 | 42.9107 | 25.0261 | 37.3744 | 37.6019 |
|
79 |
+
| 0.0028 | 26.0 | 4940 | 3.9005 | 42.8922 | 24.8232 | 37.4217 | 37.5928 |
|
80 |
+
| 0.0028 | 27.0 | 5130 | 3.9054 | 43.1217 | 25.1892 | 37.6801 | 37.8118 |
|
81 |
+
| 0.0017 | 28.0 | 5320 | 3.9159 | 43.3466 | 25.1834 | 37.7026 | 37.9333 |
|
82 |
+
| 0.0017 | 29.0 | 5510 | 3.9240 | 43.1974 | 25.0535 | 37.6958 | 37.9008 |
|
83 |
+
| 0.0012 | 30.0 | 5700 | 3.9276 | 43.1543 | 24.9453 | 37.4907 | 37.6959 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.25.1
|
89 |
+
- Pytorch 1.13.0
|
90 |
+
- Datasets 2.8.0
|
91 |
+
- Tokenizers 0.12.1
|