update model card README.md
Browse files
README.md
CHANGED
|
@@ -5,14 +5,9 @@ tags:
|
|
| 5 |
- generated_from_trainer
|
| 6 |
metrics:
|
| 7 |
- rouge
|
| 8 |
-
- sari
|
| 9 |
model-index:
|
| 10 |
- name: mbart-large-50-clara-med
|
| 11 |
results: []
|
| 12 |
-
datasets:
|
| 13 |
-
- lcampillos/CLARA-MeD
|
| 14 |
-
language:
|
| 15 |
-
- es
|
| 16 |
---
|
| 17 |
|
| 18 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -20,14 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 20 |
|
| 21 |
# mbart-large-50-clara-med
|
| 22 |
|
| 23 |
-
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the
|
| 24 |
It achieves the following results on the evaluation set:
|
| 25 |
-
- Loss: 3.
|
| 26 |
-
- Rouge1:
|
| 27 |
-
- Rouge2:
|
| 28 |
-
- Rougel:
|
| 29 |
-
- Rougelsum:
|
| 30 |
-
- SARI: 51.3461
|
| 31 |
|
| 32 |
## Model description
|
| 33 |
|
|
@@ -58,36 +52,36 @@ The following hyperparameters were used during training:
|
|
| 58 |
|
| 59 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
| 60 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
| 61 |
-
| No log | 1.0 | 190 |
|
| 62 |
-
| No log | 2.0 | 380 | 1.
|
| 63 |
-
|
|
| 64 |
-
|
|
| 65 |
-
|
|
| 66 |
-
|
|
| 67 |
-
|
|
| 68 |
-
| 0.
|
| 69 |
-
| 0.
|
| 70 |
-
| 0.
|
| 71 |
-
| 0.
|
| 72 |
-
| 0.
|
| 73 |
-
| 0.
|
| 74 |
-
| 0.
|
| 75 |
-
| 0.
|
| 76 |
-
| 0.
|
| 77 |
-
| 0.
|
| 78 |
-
| 0.
|
| 79 |
-
| 0.
|
| 80 |
-
| 0.
|
| 81 |
-
| 0.
|
| 82 |
-
| 0.
|
| 83 |
-
| 0.
|
| 84 |
-
| 0.
|
| 85 |
-
| 0.
|
| 86 |
-
| 0.
|
| 87 |
-
| 0.
|
| 88 |
-
| 0.
|
| 89 |
-
| 0.
|
| 90 |
-
| 0.
|
| 91 |
|
| 92 |
|
| 93 |
### Framework versions
|
|
@@ -95,4 +89,4 @@ The following hyperparameters were used during training:
|
|
| 95 |
- Transformers 4.25.1
|
| 96 |
- Pytorch 1.13.0
|
| 97 |
- Datasets 2.8.0
|
| 98 |
-
- Tokenizers 0.12.1
|
|
|
|
| 5 |
- generated_from_trainer
|
| 6 |
metrics:
|
| 7 |
- rouge
|
|
|
|
| 8 |
model-index:
|
| 9 |
- name: mbart-large-50-clara-med
|
| 10 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 15 |
|
| 16 |
# mbart-large-50-clara-med
|
| 17 |
|
| 18 |
+
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset.
|
| 19 |
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 3.2175
|
| 21 |
+
- Rouge1: 48.3311
|
| 22 |
+
- Rouge2: 30.5638
|
| 23 |
+
- Rougel: 43.5214
|
| 24 |
+
- Rougelsum: 43.6488
|
|
|
|
| 25 |
|
| 26 |
## Model description
|
| 27 |
|
|
|
|
| 52 |
|
| 53 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
| 54 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
| 55 |
+
| No log | 1.0 | 190 | 3.2394 | 16.8539 | 2.7013 | 12.425 | 12.5286 |
|
| 56 |
+
| No log | 2.0 | 380 | 1.7381 | 44.5316 | 27.8022 | 40.1591 | 40.3177 |
|
| 57 |
+
| 3.4249 | 3.0 | 570 | 1.7198 | 45.6463 | 28.6925 | 41.263 | 41.4703 |
|
| 58 |
+
| 3.4249 | 4.0 | 760 | 1.9450 | 43.0233 | 26.3397 | 38.7518 | 38.9154 |
|
| 59 |
+
| 0.8377 | 5.0 | 950 | 2.1068 | 46.5936 | 28.7218 | 41.7184 | 41.8448 |
|
| 60 |
+
| 0.8377 | 6.0 | 1140 | 2.2815 | 46.4517 | 28.5639 | 41.8107 | 41.9996 |
|
| 61 |
+
| 0.8377 | 7.0 | 1330 | 2.4726 | 46.0403 | 28.1887 | 40.9183 | 41.0318 |
|
| 62 |
+
| 0.3195 | 8.0 | 1520 | 2.5690 | 47.255 | 29.1482 | 42.4463 | 42.5728 |
|
| 63 |
+
| 0.3195 | 9.0 | 1710 | 2.6753 | 46.5967 | 28.5688 | 41.414 | 41.5889 |
|
| 64 |
+
| 0.1925 | 10.0 | 1900 | 2.7276 | 46.3251 | 28.4889 | 41.4556 | 41.581 |
|
| 65 |
+
| 0.1925 | 11.0 | 2090 | 2.7638 | 46.9325 | 29.2558 | 41.726 | 41.8413 |
|
| 66 |
+
| 0.1925 | 12.0 | 2280 | 2.8273 | 47.0344 | 29.1298 | 41.7291 | 41.9236 |
|
| 67 |
+
| 0.1313 | 13.0 | 2470 | 2.8633 | 47.5234 | 29.6376 | 42.3409 | 42.4372 |
|
| 68 |
+
| 0.1313 | 14.0 | 2660 | 2.8989 | 47.0396 | 29.117 | 41.9893 | 42.1846 |
|
| 69 |
+
| 0.1117 | 15.0 | 2850 | 2.9691 | 47.8406 | 29.889 | 42.5645 | 42.7676 |
|
| 70 |
+
| 0.1117 | 16.0 | 3040 | 2.9763 | 46.9489 | 28.9919 | 41.8404 | 42.0141 |
|
| 71 |
+
| 0.1117 | 17.0 | 3230 | 2.9985 | 47.6628 | 29.7341 | 42.6382 | 42.7649 |
|
| 72 |
+
| 0.0824 | 18.0 | 3420 | 3.0511 | 48.0627 | 30.4108 | 43.1693 | 43.3489 |
|
| 73 |
+
| 0.0824 | 19.0 | 3610 | 3.0102 | 48.05 | 29.9552 | 43.1462 | 43.3421 |
|
| 74 |
+
| 0.0467 | 20.0 | 3800 | 3.0520 | 47.5451 | 29.6129 | 42.6499 | 42.7968 |
|
| 75 |
+
| 0.0467 | 21.0 | 3990 | 3.0978 | 47.5042 | 29.6191 | 42.6093 | 42.7341 |
|
| 76 |
+
| 0.0467 | 22.0 | 4180 | 3.1270 | 47.8301 | 29.9484 | 42.6866 | 42.9179 |
|
| 77 |
+
| 0.0246 | 23.0 | 4370 | 3.1435 | 47.6683 | 30.1974 | 43.0456 | 43.1496 |
|
| 78 |
+
| 0.0246 | 24.0 | 4560 | 3.1599 | 47.8652 | 30.2751 | 43.0445 | 43.1898 |
|
| 79 |
+
| 0.013 | 25.0 | 4750 | 3.1750 | 48.1352 | 30.4185 | 43.0485 | 43.2456 |
|
| 80 |
+
| 0.013 | 26.0 | 4940 | 3.1939 | 47.9653 | 30.3968 | 43.1271 | 43.2522 |
|
| 81 |
+
| 0.013 | 27.0 | 5130 | 3.2054 | 48.2122 | 30.6 | 43.3461 | 43.4629 |
|
| 82 |
+
| 0.0071 | 28.0 | 5320 | 3.1964 | 47.924 | 30.3089 | 43.0402 | 43.2016 |
|
| 83 |
+
| 0.0071 | 29.0 | 5510 | 3.2123 | 48.2967 | 30.5088 | 43.431 | 43.5384 |
|
| 84 |
+
| 0.005 | 30.0 | 5700 | 3.2175 | 48.3311 | 30.5638 | 43.5214 | 43.6488 |
|
| 85 |
|
| 86 |
|
| 87 |
### Framework versions
|
|
|
|
| 89 |
- Transformers 4.25.1
|
| 90 |
- Pytorch 1.13.0
|
| 91 |
- Datasets 2.8.0
|
| 92 |
+
- Tokenizers 0.12.1
|