Model save
Browse files
README.md
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
model-index:
|
| 5 |
+
- name: full2-lstm-3
|
| 6 |
+
results: []
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 10 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 11 |
+
|
| 12 |
+
# full2-lstm-3
|
| 13 |
+
|
| 14 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
|
| 15 |
+
It achieves the following results on the evaluation set:
|
| 16 |
+
- Loss: 3.9703
|
| 17 |
+
|
| 18 |
+
## Model description
|
| 19 |
+
|
| 20 |
+
More information needed
|
| 21 |
+
|
| 22 |
+
## Intended uses & limitations
|
| 23 |
+
|
| 24 |
+
More information needed
|
| 25 |
+
|
| 26 |
+
## Training and evaluation data
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Training procedure
|
| 31 |
+
|
| 32 |
+
### Training hyperparameters
|
| 33 |
+
|
| 34 |
+
The following hyperparameters were used during training:
|
| 35 |
+
- learning_rate: 5e-05
|
| 36 |
+
- train_batch_size: 32
|
| 37 |
+
- eval_batch_size: 32
|
| 38 |
+
- seed: 3
|
| 39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 40 |
+
- lr_scheduler_type: linear
|
| 41 |
+
- training_steps: 3052726
|
| 42 |
+
|
| 43 |
+
### Training results
|
| 44 |
+
|
| 45 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 46 |
+
|:-------------:|:-----:|:-------:|:---------------:|
|
| 47 |
+
| 4.7949 | 0.03 | 76320 | 4.7623 |
|
| 48 |
+
| 4.5075 | 1.03 | 152640 | 4.4794 |
|
| 49 |
+
| 4.3602 | 0.03 | 228960 | 4.3429 |
|
| 50 |
+
| 4.2766 | 1.03 | 305280 | 4.2588 |
|
| 51 |
+
| 4.2113 | 0.03 | 381600 | 4.2022 |
|
| 52 |
+
| 4.1648 | 1.03 | 457920 | 4.1606 |
|
| 53 |
+
| 4.1336 | 0.03 | 534240 | 4.1292 |
|
| 54 |
+
| 4.1008 | 1.03 | 610560 | 4.1050 |
|
| 55 |
+
| 4.0722 | 0.03 | 686880 | 4.0849 |
|
| 56 |
+
| 4.0491 | 1.03 | 763200 | 4.0689 |
|
| 57 |
+
| 4.0263 | 0.03 | 839520 | 4.0557 |
|
| 58 |
+
| 4.0088 | 1.03 | 915840 | 4.0452 |
|
| 59 |
+
| 3.9954 | 0.03 | 992160 | 4.0355 |
|
| 60 |
+
| 3.9784 | 1.03 | 1068480 | 4.0274 |
|
| 61 |
+
| 3.9641 | 0.03 | 1144800 | 4.0212 |
|
| 62 |
+
| 3.9491 | 1.03 | 1221120 | 4.0152 |
|
| 63 |
+
| 3.9347 | 0.03 | 1297440 | 4.0090 |
|
| 64 |
+
| 3.9257 | 1.03 | 1373760 | 4.0047 |
|
| 65 |
+
| 3.9144 | 0.03 | 1450080 | 4.0009 |
|
| 66 |
+
| 3.9137 | 1.03 | 1526400 | 3.9975 |
|
| 67 |
+
| 3.9061 | 0.03 | 1602720 | 3.9940 |
|
| 68 |
+
| 3.9037 | 1.03 | 1679040 | 3.9917 |
|
| 69 |
+
| 3.9045 | 0.03 | 1755360 | 3.9893 |
|
| 70 |
+
| 3.8999 | 1.03 | 1831680 | 3.9873 |
|
| 71 |
+
| 3.8897 | 0.03 | 1908000 | 3.9854 |
|
| 72 |
+
| 3.8842 | 1.03 | 1984320 | 3.9832 |
|
| 73 |
+
| 3.8789 | 0.03 | 2060640 | 3.9805 |
|
| 74 |
+
| 3.8724 | 1.03 | 2136960 | 3.9793 |
|
| 75 |
+
| 3.8717 | 0.03 | 2213280 | 3.9778 |
|
| 76 |
+
| 3.8658 | 1.03 | 2289600 | 3.9768 |
|
| 77 |
+
| 3.8594 | 0.03 | 2365920 | 3.9757 |
|
| 78 |
+
| 3.8523 | 1.03 | 2442240 | 3.9751 |
|
| 79 |
+
| 3.8455 | 0.03 | 2518560 | 3.9739 |
|
| 80 |
+
| 3.8431 | 0.03 | 2594880 | 3.9734 |
|
| 81 |
+
| 3.8368 | 0.03 | 2671200 | 3.9728 |
|
| 82 |
+
| 3.8431 | 1.03 | 2747520 | 3.9721 |
|
| 83 |
+
| 3.8423 | 0.03 | 2823840 | 3.9716 |
|
| 84 |
+
| 3.8432 | 0.03 | 2900160 | 3.9712 |
|
| 85 |
+
| 3.8477 | 1.03 | 2976480 | 3.9706 |
|
| 86 |
+
| 3.8461 | 0.02 | 3052726 | 3.9703 |
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
### Framework versions
|
| 90 |
+
|
| 91 |
+
- Transformers 4.33.3
|
| 92 |
+
- Pytorch 2.0.1
|
| 93 |
+
- Datasets 2.12.0
|
| 94 |
+
- Tokenizers 0.13.3
|