Camais03 commited on
Commit
6ebb200
Β·
verified Β·
1 Parent(s): a5a0432

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -7
README.md CHANGED
@@ -15,7 +15,7 @@ An advanced deep learning model for automatically tagging anime/manga illustrati
15
 
16
  ### Major Performance Improvements
17
  - **Micro F1**: 58.1% β†’ **67.3%** (+9.2 percentage points)
18
- - **Macro F1**: 31.5% β†’ **50.6%** (+19.1 percentage points)
19
  - **Model Size**: 424M β†’ **143M parameters** (-66% reduction)
20
  - **Architecture**: Switched from EfficientNetV2-L to Vision Transformer (ViT) backbone
21
  - **Simplified Design**: Streamlined from dual-stage to single refined prediction model
@@ -37,14 +37,10 @@ An advanced deep learning model for automatically tagging anime/manga illustrati
37
 
38
  ## ✨ Features
39
 
40
- - **Multi-category tagging system**: Handles general tags, characters, copyright (series), artists, meta information, and content ratings
41
- - **High performance**: 67.3% micro F1 score (50.6% macro F1) across 70,527 possible tags
42
- - **Windows compatibility**: Works on Windows without Flash Attention requirements
43
- - **Streamlit web interface**: User-friendly UI for uploading and analyzing images and a tag collection game
44
- - **Adjustable threshold profiles**: Micro, Macro, Balanced, Category-specific, High Precision, and High Recall profiles
45
  - **Fine-grained control**: Per-category threshold adjustments for precision-recall tradeoffs
46
  - **Safetensors and ONNX**: Available in main directory
47
- - **Vision Transformer Backbone**: Modern architecture with superior performance-to-parameter ratio
48
 
49
  ## πŸ“Š Performance Analysis
50
 
@@ -205,6 +201,8 @@ The interface is divided into three main sections:
205
 
206
  ![Application Interface](images/app_screenshot.png)
207
 
 
 
208
  ![Tag Results Example](images/tag_results_example.png)
209
 
210
  ### πŸ› οΈ Requirements
 
15
 
16
  ### Major Performance Improvements
17
  - **Micro F1**: 58.1% β†’ **67.3%** (+9.2 percentage points)
18
+ - **Macro F1**: 33.8% β†’ **50.6%** (+16.8 percentage points)
19
  - **Model Size**: 424M β†’ **143M parameters** (-66% reduction)
20
  - **Architecture**: Switched from EfficientNetV2-L to Vision Transformer (ViT) backbone
21
  - **Simplified Design**: Streamlined from dual-stage to single refined prediction model
 
37
 
38
  ## ✨ Features
39
 
40
+ - **Streamlit web interface app and game**: User-friendly UI for uploading and analyzing images and a tag collection game
41
+ - **Adjustable threshold profiles**: Micro, Macro, Balanced, Category-specific, profiles
 
 
 
42
  - **Fine-grained control**: Per-category threshold adjustments for precision-recall tradeoffs
43
  - **Safetensors and ONNX**: Available in main directory
 
44
 
45
  ## πŸ“Š Performance Analysis
46
 
 
201
 
202
  ![Application Interface](images/app_screenshot.png)
203
 
204
+ *Note the rare characters and tags idenified. Some only have 100's of samples on danbooru!*
205
+
206
  ![Tag Results Example](images/tag_results_example.png)
207
 
208
  ### πŸ› οΈ Requirements