Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +384 -3
- config.json +5 -161
- config_sentence_transformers.json +10 -0
- model.safetensors +2 -2
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +35 -5
- tokenizer.json +0 -0
- tokenizer_config.json +7 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,384 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Supabase/gte-small
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:68
|
13 |
+
- loss:MultipleNegativesRankingLoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: Rollito de primavera de verdura
|
16 |
+
sentences:
|
17 |
+
- 'Vinos blancos con cuerpo, amplios y sabrosos. En boca potentes, untuosos y densos
|
18 |
+
fruto del paso por barrica. Vinos blancos con intensidad aromática alta y con
|
19 |
+
aromas a manzana Golden, mantequilla, pan tostado, vainilla, frutos secos. Ejemplo:
|
20 |
+
Chardonnay, Garnacha blanca, Viura de Rioja.'
|
21 |
+
- Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y poco
|
22 |
+
denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde,
|
23 |
+
melocotón, piña e hinojo.
|
24 |
+
- Vino blanco joven con buena acidez o un vino rosado afrutado.
|
25 |
+
- source_sentence: Pollo al curri rojo
|
26 |
+
sentences:
|
27 |
+
- 'Vino blanco afrutado de medio cuerpo, con aromas a melocotón, piña, uva, fruta
|
28 |
+
de la pasión, queroseno y flores. Ejemplos de variedades: los Verdejo de Rueda,
|
29 |
+
Valencia Moscatell, los Malvasía de Canarias, los Riesling de Alsacia i Alemania.
|
30 |
+
los Gerwüztraminer.'
|
31 |
+
- 'Vino blanco afrutado de medio cuerpo, con aromas a melocotón, piña, uva, fruta
|
32 |
+
de la pasión, queroseno y flores. Ejemplos de variedades: los Verdejo de Rueda,
|
33 |
+
Valencia Moscatell, los Malvasía de Canarias, los Riesling de Alsacia i Alemania.
|
34 |
+
los Gerwüztraminer.'
|
35 |
+
- Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y poco
|
36 |
+
denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde,
|
37 |
+
melocotón, piña e hinojo. O también vinos rosados ligeros, referescantes, delicados
|
38 |
+
y de color pálido. En boca son ligeros y de sabor delicado. Con aromas a fruta
|
39 |
+
roja silvestre, cítricos y herbáceos.
|
40 |
+
- source_sentence: Carnes blancas
|
41 |
+
sentences:
|
42 |
+
- ' Vinos blancos con cuerpo, amplios y sabrosos. En boca potentes, untuosos y densos
|
43 |
+
fruto del paso por barrica. Vinos blancos con intensidad aromática alta y con
|
44 |
+
aromas a manzana Golden, mantequilla, pan tostado, vainilla, frutos secos. Ejemplo:
|
45 |
+
Chardonnay, Garnacha blanca, Viura de Rioja. O también, Vinos rosados envejecidos
|
46 |
+
en barrica, y también los vinos elaborados a partir de Cabernet, Merlot o Syrah.
|
47 |
+
Vinos rosados redondos, afrutados, de color intenso y sabor potente y sabroso.
|
48 |
+
Con maceración de la piel.'
|
49 |
+
- Vino blanco con buena acidez y notas florales.
|
50 |
+
- ' Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y
|
51 |
+
poco denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde,
|
52 |
+
melocotón, piña e hinojo.'
|
53 |
+
- source_sentence: Chocolates o postres de cacao o café
|
54 |
+
sentences:
|
55 |
+
- 'Vinos tintos afrutados, jugosos y desenfadados. Con aromas a frutos rojos, lácticos.
|
56 |
+
pimienta, ciruela y mermeladas. Son vinos sencillos y amables, golosos y frescos
|
57 |
+
a partes iguales. '
|
58 |
+
- pedro ximenez, vinos de jerez, O también Vino tinto con mucha intensidad y potencia,
|
59 |
+
con notas a fruta tinta madura, notas a madera, notas a pimienta negra, a café,
|
60 |
+
cacao
|
61 |
+
- Vino blanco con buena acidez y notas de fruta blanca.
|
62 |
+
- source_sentence: Burger crujiente de zanahoria
|
63 |
+
sentences:
|
64 |
+
- Vino blanco joven con buena acidez o un vino rosado afrutado.
|
65 |
+
- ' Vino tinto con mucha intensidad y potencia, con notas a fruta tinta madura,
|
66 |
+
notas a madera, notas a pimienta negra, a café, cacao. Con presencia de taninos
|
67 |
+
bien integrados fruto del contacto con las pieles durante un largo período. Son
|
68 |
+
sabrosos, corpulentos, impactantes. Rioja o Ribera del Duero, Bordeus, Ródano '
|
69 |
+
- 'Vinos tintos ligeros con mucha acidez y poco volumen en boca, con notas de fruta
|
70 |
+
roja muy fresca, sin presencia de taninos; normalmente con notas verdes. ejemplos:
|
71 |
+
mencia, gammay, pinot noir'
|
72 |
+
---
|
73 |
+
|
74 |
+
# SentenceTransformer based on Supabase/gte-small
|
75 |
+
|
76 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Supabase/gte-small](https://huggingface.co/Supabase/gte-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
77 |
+
|
78 |
+
## Model Details
|
79 |
+
|
80 |
+
### Model Description
|
81 |
+
- **Model Type:** Sentence Transformer
|
82 |
+
- **Base model:** [Supabase/gte-small](https://huggingface.co/Supabase/gte-small) <!-- at revision 93b36ff09519291b77d6000d2e86bd8565378086 -->
|
83 |
+
- **Maximum Sequence Length:** 512 tokens
|
84 |
+
- **Output Dimensionality:** 384 tokens
|
85 |
+
- **Similarity Function:** Cosine Similarity
|
86 |
+
<!-- - **Training Dataset:** Unknown -->
|
87 |
+
<!-- - **Language:** Unknown -->
|
88 |
+
<!-- - **License:** Unknown -->
|
89 |
+
|
90 |
+
### Model Sources
|
91 |
+
|
92 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
93 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
94 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
95 |
+
|
96 |
+
### Full Model Architecture
|
97 |
+
|
98 |
+
```
|
99 |
+
SentenceTransformer(
|
100 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
101 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
102 |
+
)
|
103 |
+
```
|
104 |
+
|
105 |
+
## Usage
|
106 |
+
|
107 |
+
### Direct Usage (Sentence Transformers)
|
108 |
+
|
109 |
+
First install the Sentence Transformers library:
|
110 |
+
|
111 |
+
```bash
|
112 |
+
pip install -U sentence-transformers
|
113 |
+
```
|
114 |
+
|
115 |
+
Then you can load this model and run inference.
|
116 |
+
```python
|
117 |
+
from sentence_transformers import SentenceTransformer
|
118 |
+
|
119 |
+
# Download from the 🤗 Hub
|
120 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
121 |
+
# Run inference
|
122 |
+
sentences = [
|
123 |
+
'Burger crujiente de zanahoria',
|
124 |
+
'Vino blanco joven con buena acidez o un vino rosado afrutado.',
|
125 |
+
'Vinos tintos ligeros con mucha acidez y poco volumen en boca, con notas de fruta roja muy fresca, sin presencia de taninos; normalmente con notas verdes. ejemplos: mencia, gammay, pinot noir',
|
126 |
+
]
|
127 |
+
embeddings = model.encode(sentences)
|
128 |
+
print(embeddings.shape)
|
129 |
+
# [3, 384]
|
130 |
+
|
131 |
+
# Get the similarity scores for the embeddings
|
132 |
+
similarities = model.similarity(embeddings, embeddings)
|
133 |
+
print(similarities.shape)
|
134 |
+
# [3, 3]
|
135 |
+
```
|
136 |
+
|
137 |
+
<!--
|
138 |
+
### Direct Usage (Transformers)
|
139 |
+
|
140 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
141 |
+
|
142 |
+
</details>
|
143 |
+
-->
|
144 |
+
|
145 |
+
<!--
|
146 |
+
### Downstream Usage (Sentence Transformers)
|
147 |
+
|
148 |
+
You can finetune this model on your own dataset.
|
149 |
+
|
150 |
+
<details><summary>Click to expand</summary>
|
151 |
+
|
152 |
+
</details>
|
153 |
+
-->
|
154 |
+
|
155 |
+
<!--
|
156 |
+
### Out-of-Scope Use
|
157 |
+
|
158 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
159 |
+
-->
|
160 |
+
|
161 |
+
<!--
|
162 |
+
## Bias, Risks and Limitations
|
163 |
+
|
164 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
165 |
+
-->
|
166 |
+
|
167 |
+
<!--
|
168 |
+
### Recommendations
|
169 |
+
|
170 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
171 |
+
-->
|
172 |
+
|
173 |
+
## Training Details
|
174 |
+
|
175 |
+
### Training Dataset
|
176 |
+
|
177 |
+
#### Unnamed Dataset
|
178 |
+
|
179 |
+
|
180 |
+
* Size: 68 training samples
|
181 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
182 |
+
* Approximate statistics based on the first 1000 samples:
|
183 |
+
| | sentence_0 | sentence_1 |
|
184 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
185 |
+
| type | string | string |
|
186 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 16.46 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 64.46 tokens</li><li>max: 178 tokens</li></ul> |
|
187 |
+
* Samples:
|
188 |
+
| sentence_0 | sentence_1 |
|
189 |
+
|:---------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
190 |
+
| <code>Nuggets de pollo rebozados en tempura</code> | <code>Vino blanco joven con buena acidez o un vino rosado afrutado.</code> |
|
191 |
+
| <code>Paellas de mar, paella marinera.</code> | <code> Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y poco denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde, melocotón, piña e hinojo.</code> |
|
192 |
+
| <code>Fideos de arroz con pollo</code> | <code>Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y poco denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde, melocotón, piña e hinojo.</code> |
|
193 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
194 |
+
```json
|
195 |
+
{
|
196 |
+
"scale": 20.0,
|
197 |
+
"similarity_fct": "cos_sim"
|
198 |
+
}
|
199 |
+
```
|
200 |
+
|
201 |
+
### Training Hyperparameters
|
202 |
+
#### Non-Default Hyperparameters
|
203 |
+
|
204 |
+
- `per_device_train_batch_size`: 4
|
205 |
+
- `per_device_eval_batch_size`: 4
|
206 |
+
- `num_train_epochs`: 30
|
207 |
+
- `multi_dataset_batch_sampler`: round_robin
|
208 |
+
|
209 |
+
#### All Hyperparameters
|
210 |
+
<details><summary>Click to expand</summary>
|
211 |
+
|
212 |
+
- `overwrite_output_dir`: False
|
213 |
+
- `do_predict`: False
|
214 |
+
- `eval_strategy`: no
|
215 |
+
- `prediction_loss_only`: True
|
216 |
+
- `per_device_train_batch_size`: 4
|
217 |
+
- `per_device_eval_batch_size`: 4
|
218 |
+
- `per_gpu_train_batch_size`: None
|
219 |
+
- `per_gpu_eval_batch_size`: None
|
220 |
+
- `gradient_accumulation_steps`: 1
|
221 |
+
- `eval_accumulation_steps`: None
|
222 |
+
- `learning_rate`: 5e-05
|
223 |
+
- `weight_decay`: 0.0
|
224 |
+
- `adam_beta1`: 0.9
|
225 |
+
- `adam_beta2`: 0.999
|
226 |
+
- `adam_epsilon`: 1e-08
|
227 |
+
- `max_grad_norm`: 1
|
228 |
+
- `num_train_epochs`: 30
|
229 |
+
- `max_steps`: -1
|
230 |
+
- `lr_scheduler_type`: linear
|
231 |
+
- `lr_scheduler_kwargs`: {}
|
232 |
+
- `warmup_ratio`: 0.0
|
233 |
+
- `warmup_steps`: 0
|
234 |
+
- `log_level`: passive
|
235 |
+
- `log_level_replica`: warning
|
236 |
+
- `log_on_each_node`: True
|
237 |
+
- `logging_nan_inf_filter`: True
|
238 |
+
- `save_safetensors`: True
|
239 |
+
- `save_on_each_node`: False
|
240 |
+
- `save_only_model`: False
|
241 |
+
- `restore_callback_states_from_checkpoint`: False
|
242 |
+
- `no_cuda`: False
|
243 |
+
- `use_cpu`: False
|
244 |
+
- `use_mps_device`: False
|
245 |
+
- `seed`: 42
|
246 |
+
- `data_seed`: None
|
247 |
+
- `jit_mode_eval`: False
|
248 |
+
- `use_ipex`: False
|
249 |
+
- `bf16`: False
|
250 |
+
- `fp16`: False
|
251 |
+
- `fp16_opt_level`: O1
|
252 |
+
- `half_precision_backend`: auto
|
253 |
+
- `bf16_full_eval`: False
|
254 |
+
- `fp16_full_eval`: False
|
255 |
+
- `tf32`: None
|
256 |
+
- `local_rank`: 0
|
257 |
+
- `ddp_backend`: None
|
258 |
+
- `tpu_num_cores`: None
|
259 |
+
- `tpu_metrics_debug`: False
|
260 |
+
- `debug`: []
|
261 |
+
- `dataloader_drop_last`: False
|
262 |
+
- `dataloader_num_workers`: 0
|
263 |
+
- `dataloader_prefetch_factor`: None
|
264 |
+
- `past_index`: -1
|
265 |
+
- `disable_tqdm`: False
|
266 |
+
- `remove_unused_columns`: True
|
267 |
+
- `label_names`: None
|
268 |
+
- `load_best_model_at_end`: False
|
269 |
+
- `ignore_data_skip`: False
|
270 |
+
- `fsdp`: []
|
271 |
+
- `fsdp_min_num_params`: 0
|
272 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
273 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
274 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
275 |
+
- `deepspeed`: None
|
276 |
+
- `label_smoothing_factor`: 0.0
|
277 |
+
- `optim`: adamw_torch
|
278 |
+
- `optim_args`: None
|
279 |
+
- `adafactor`: False
|
280 |
+
- `group_by_length`: False
|
281 |
+
- `length_column_name`: length
|
282 |
+
- `ddp_find_unused_parameters`: None
|
283 |
+
- `ddp_bucket_cap_mb`: None
|
284 |
+
- `ddp_broadcast_buffers`: False
|
285 |
+
- `dataloader_pin_memory`: True
|
286 |
+
- `dataloader_persistent_workers`: False
|
287 |
+
- `skip_memory_metrics`: True
|
288 |
+
- `use_legacy_prediction_loop`: False
|
289 |
+
- `push_to_hub`: False
|
290 |
+
- `resume_from_checkpoint`: None
|
291 |
+
- `hub_model_id`: None
|
292 |
+
- `hub_strategy`: every_save
|
293 |
+
- `hub_private_repo`: False
|
294 |
+
- `hub_always_push`: False
|
295 |
+
- `gradient_checkpointing`: False
|
296 |
+
- `gradient_checkpointing_kwargs`: None
|
297 |
+
- `include_inputs_for_metrics`: False
|
298 |
+
- `eval_do_concat_batches`: True
|
299 |
+
- `fp16_backend`: auto
|
300 |
+
- `push_to_hub_model_id`: None
|
301 |
+
- `push_to_hub_organization`: None
|
302 |
+
- `mp_parameters`:
|
303 |
+
- `auto_find_batch_size`: False
|
304 |
+
- `full_determinism`: False
|
305 |
+
- `torchdynamo`: None
|
306 |
+
- `ray_scope`: last
|
307 |
+
- `ddp_timeout`: 1800
|
308 |
+
- `torch_compile`: False
|
309 |
+
- `torch_compile_backend`: None
|
310 |
+
- `torch_compile_mode`: None
|
311 |
+
- `dispatch_batches`: None
|
312 |
+
- `split_batches`: None
|
313 |
+
- `include_tokens_per_second`: False
|
314 |
+
- `include_num_input_tokens_seen`: False
|
315 |
+
- `neftune_noise_alpha`: None
|
316 |
+
- `optim_target_modules`: None
|
317 |
+
- `batch_eval_metrics`: False
|
318 |
+
- `eval_on_start`: False
|
319 |
+
- `batch_sampler`: batch_sampler
|
320 |
+
- `multi_dataset_batch_sampler`: round_robin
|
321 |
+
|
322 |
+
</details>
|
323 |
+
|
324 |
+
### Training Logs
|
325 |
+
| Epoch | Step | Training Loss |
|
326 |
+
|:-------:|:----:|:-------------:|
|
327 |
+
| 29.4118 | 500 | 0.2567 |
|
328 |
+
|
329 |
+
|
330 |
+
### Framework Versions
|
331 |
+
- Python: 3.10.12
|
332 |
+
- Sentence Transformers: 3.0.1
|
333 |
+
- Transformers: 4.42.4
|
334 |
+
- PyTorch: 2.3.1+cu121
|
335 |
+
- Accelerate: 0.32.1
|
336 |
+
- Datasets: 2.20.0
|
337 |
+
- Tokenizers: 0.19.1
|
338 |
+
|
339 |
+
## Citation
|
340 |
+
|
341 |
+
### BibTeX
|
342 |
+
|
343 |
+
#### Sentence Transformers
|
344 |
+
```bibtex
|
345 |
+
@inproceedings{reimers-2019-sentence-bert,
|
346 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
347 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
348 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
349 |
+
month = "11",
|
350 |
+
year = "2019",
|
351 |
+
publisher = "Association for Computational Linguistics",
|
352 |
+
url = "https://arxiv.org/abs/1908.10084",
|
353 |
+
}
|
354 |
+
```
|
355 |
+
|
356 |
+
#### MultipleNegativesRankingLoss
|
357 |
+
```bibtex
|
358 |
+
@misc{henderson2017efficient,
|
359 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
360 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
361 |
+
year={2017},
|
362 |
+
eprint={1705.00652},
|
363 |
+
archivePrefix={arXiv},
|
364 |
+
primaryClass={cs.CL}
|
365 |
+
}
|
366 |
+
```
|
367 |
+
|
368 |
+
<!--
|
369 |
+
## Glossary
|
370 |
+
|
371 |
+
*Clearly define terms in order to be accessible across audiences.*
|
372 |
+
-->
|
373 |
+
|
374 |
+
<!--
|
375 |
+
## Model Card Authors
|
376 |
+
|
377 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
378 |
+
-->
|
379 |
+
|
380 |
+
<!--
|
381 |
+
## Model Card Contact
|
382 |
+
|
383 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
384 |
+
-->
|
config.json
CHANGED
@@ -1,170 +1,15 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
8 |
-
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
-
"hidden_size":
|
12 |
-
"id2label": {
|
13 |
-
"0": "LABEL_0",
|
14 |
-
"1": "LABEL_1",
|
15 |
-
"2": "LABEL_2",
|
16 |
-
"3": "LABEL_3",
|
17 |
-
"4": "LABEL_4",
|
18 |
-
"5": "LABEL_5",
|
19 |
-
"6": "LABEL_6",
|
20 |
-
"7": "LABEL_7",
|
21 |
-
"8": "LABEL_8",
|
22 |
-
"9": "LABEL_9",
|
23 |
-
"10": "LABEL_10",
|
24 |
-
"11": "LABEL_11",
|
25 |
-
"12": "LABEL_12",
|
26 |
-
"13": "LABEL_13",
|
27 |
-
"14": "LABEL_14",
|
28 |
-
"15": "LABEL_15",
|
29 |
-
"16": "LABEL_16",
|
30 |
-
"17": "LABEL_17",
|
31 |
-
"18": "LABEL_18",
|
32 |
-
"19": "LABEL_19",
|
33 |
-
"20": "LABEL_20",
|
34 |
-
"21": "LABEL_21",
|
35 |
-
"22": "LABEL_22",
|
36 |
-
"23": "LABEL_23",
|
37 |
-
"24": "LABEL_24",
|
38 |
-
"25": "LABEL_25",
|
39 |
-
"26": "LABEL_26",
|
40 |
-
"27": "LABEL_27",
|
41 |
-
"28": "LABEL_28",
|
42 |
-
"29": "LABEL_29",
|
43 |
-
"30": "LABEL_30",
|
44 |
-
"31": "LABEL_31",
|
45 |
-
"32": "LABEL_32",
|
46 |
-
"33": "LABEL_33",
|
47 |
-
"34": "LABEL_34",
|
48 |
-
"35": "LABEL_35",
|
49 |
-
"36": "LABEL_36",
|
50 |
-
"37": "LABEL_37",
|
51 |
-
"38": "LABEL_38",
|
52 |
-
"39": "LABEL_39",
|
53 |
-
"40": "LABEL_40",
|
54 |
-
"41": "LABEL_41",
|
55 |
-
"42": "LABEL_42",
|
56 |
-
"43": "LABEL_43",
|
57 |
-
"44": "LABEL_44",
|
58 |
-
"45": "LABEL_45",
|
59 |
-
"46": "LABEL_46",
|
60 |
-
"47": "LABEL_47",
|
61 |
-
"48": "LABEL_48",
|
62 |
-
"49": "LABEL_49",
|
63 |
-
"50": "LABEL_50",
|
64 |
-
"51": "LABEL_51",
|
65 |
-
"52": "LABEL_52",
|
66 |
-
"53": "LABEL_53",
|
67 |
-
"54": "LABEL_54",
|
68 |
-
"55": "LABEL_55",
|
69 |
-
"56": "LABEL_56",
|
70 |
-
"57": "LABEL_57",
|
71 |
-
"58": "LABEL_58",
|
72 |
-
"59": "LABEL_59",
|
73 |
-
"60": "LABEL_60",
|
74 |
-
"61": "LABEL_61",
|
75 |
-
"62": "LABEL_62",
|
76 |
-
"63": "LABEL_63",
|
77 |
-
"64": "LABEL_64",
|
78 |
-
"65": "LABEL_65",
|
79 |
-
"66": "LABEL_66",
|
80 |
-
"67": "LABEL_67",
|
81 |
-
"68": "LABEL_68",
|
82 |
-
"69": "LABEL_69",
|
83 |
-
"70": "LABEL_70",
|
84 |
-
"71": "LABEL_71",
|
85 |
-
"72": "LABEL_72",
|
86 |
-
"73": "LABEL_73",
|
87 |
-
"74": "LABEL_74"
|
88 |
-
},
|
89 |
"initializer_range": 0.02,
|
90 |
-
"intermediate_size":
|
91 |
-
"label2id": {
|
92 |
-
"LABEL_0": 0,
|
93 |
-
"LABEL_1": 1,
|
94 |
-
"LABEL_10": 10,
|
95 |
-
"LABEL_11": 11,
|
96 |
-
"LABEL_12": 12,
|
97 |
-
"LABEL_13": 13,
|
98 |
-
"LABEL_14": 14,
|
99 |
-
"LABEL_15": 15,
|
100 |
-
"LABEL_16": 16,
|
101 |
-
"LABEL_17": 17,
|
102 |
-
"LABEL_18": 18,
|
103 |
-
"LABEL_19": 19,
|
104 |
-
"LABEL_2": 2,
|
105 |
-
"LABEL_20": 20,
|
106 |
-
"LABEL_21": 21,
|
107 |
-
"LABEL_22": 22,
|
108 |
-
"LABEL_23": 23,
|
109 |
-
"LABEL_24": 24,
|
110 |
-
"LABEL_25": 25,
|
111 |
-
"LABEL_26": 26,
|
112 |
-
"LABEL_27": 27,
|
113 |
-
"LABEL_28": 28,
|
114 |
-
"LABEL_29": 29,
|
115 |
-
"LABEL_3": 3,
|
116 |
-
"LABEL_30": 30,
|
117 |
-
"LABEL_31": 31,
|
118 |
-
"LABEL_32": 32,
|
119 |
-
"LABEL_33": 33,
|
120 |
-
"LABEL_34": 34,
|
121 |
-
"LABEL_35": 35,
|
122 |
-
"LABEL_36": 36,
|
123 |
-
"LABEL_37": 37,
|
124 |
-
"LABEL_38": 38,
|
125 |
-
"LABEL_39": 39,
|
126 |
-
"LABEL_4": 4,
|
127 |
-
"LABEL_40": 40,
|
128 |
-
"LABEL_41": 41,
|
129 |
-
"LABEL_42": 42,
|
130 |
-
"LABEL_43": 43,
|
131 |
-
"LABEL_44": 44,
|
132 |
-
"LABEL_45": 45,
|
133 |
-
"LABEL_46": 46,
|
134 |
-
"LABEL_47": 47,
|
135 |
-
"LABEL_48": 48,
|
136 |
-
"LABEL_49": 49,
|
137 |
-
"LABEL_5": 5,
|
138 |
-
"LABEL_50": 50,
|
139 |
-
"LABEL_51": 51,
|
140 |
-
"LABEL_52": 52,
|
141 |
-
"LABEL_53": 53,
|
142 |
-
"LABEL_54": 54,
|
143 |
-
"LABEL_55": 55,
|
144 |
-
"LABEL_56": 56,
|
145 |
-
"LABEL_57": 57,
|
146 |
-
"LABEL_58": 58,
|
147 |
-
"LABEL_59": 59,
|
148 |
-
"LABEL_6": 6,
|
149 |
-
"LABEL_60": 60,
|
150 |
-
"LABEL_61": 61,
|
151 |
-
"LABEL_62": 62,
|
152 |
-
"LABEL_63": 63,
|
153 |
-
"LABEL_64": 64,
|
154 |
-
"LABEL_65": 65,
|
155 |
-
"LABEL_66": 66,
|
156 |
-
"LABEL_67": 67,
|
157 |
-
"LABEL_68": 68,
|
158 |
-
"LABEL_69": 69,
|
159 |
-
"LABEL_7": 7,
|
160 |
-
"LABEL_70": 70,
|
161 |
-
"LABEL_71": 71,
|
162 |
-
"LABEL_72": 72,
|
163 |
-
"LABEL_73": 73,
|
164 |
-
"LABEL_74": 74,
|
165 |
-
"LABEL_8": 8,
|
166 |
-
"LABEL_9": 9
|
167 |
-
},
|
168 |
"layer_norm_eps": 1e-12,
|
169 |
"max_position_embeddings": 512,
|
170 |
"model_type": "bert",
|
@@ -172,9 +17,8 @@
|
|
172 |
"num_hidden_layers": 12,
|
173 |
"pad_token_id": 0,
|
174 |
"position_embedding_type": "absolute",
|
175 |
-
"problem_type": "single_label_classification",
|
176 |
"torch_dtype": "float32",
|
177 |
-
"transformers_version": "4.
|
178 |
"type_vocab_size": 2,
|
179 |
"use_cache": true,
|
180 |
"vocab_size": 30522
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "Supabase/gte-small",
|
3 |
"architectures": [
|
4 |
+
"BertModel"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
|
|
8 |
"hidden_act": "gelu",
|
9 |
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
"layer_norm_eps": 1e-12,
|
14 |
"max_position_embeddings": 512,
|
15 |
"model_type": "bert",
|
|
|
17 |
"num_hidden_layers": 12,
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
|
|
20 |
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.42.4",
|
22 |
"type_vocab_size": 2,
|
23 |
"use_cache": true,
|
24 |
"vocab_size": 30522
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.4",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2610323da0dc0a62abc91c9ec5403938d54bb29a260a0fb90a30361eb2b2a401
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
CHANGED
@@ -1,7 +1,37 @@
|
|
1 |
{
|
2 |
-
"cls_token":
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -46,12 +46,19 @@
|
|
46 |
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
|
|
49 |
"model_max_length": 512,
|
50 |
"never_split": null,
|
|
|
51 |
"pad_token": "[PAD]",
|
|
|
|
|
52 |
"sep_token": "[SEP]",
|
|
|
53 |
"strip_accents": null,
|
54 |
"tokenize_chinese_chars": true,
|
55 |
"tokenizer_class": "BertTokenizer",
|
|
|
|
|
56 |
"unk_token": "[UNK]"
|
57 |
}
|
|
|
46 |
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
"model_max_length": 512,
|
51 |
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
"strip_accents": null,
|
59 |
"tokenize_chinese_chars": true,
|
60 |
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
"unk_token": "[UNK]"
|
64 |
}
|