Cescofors75 commited on
Commit
057a75e
·
verified ·
1 Parent(s): 54fd277

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,384 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Supabase/gte-small
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:68
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: Rollito de primavera de verdura
16
+ sentences:
17
+ - 'Vinos blancos con cuerpo, amplios y sabrosos. En boca potentes, untuosos y densos
18
+ fruto del paso por barrica. Vinos blancos con intensidad aromática alta y con
19
+ aromas a manzana Golden, mantequilla, pan tostado, vainilla, frutos secos. Ejemplo:
20
+ Chardonnay, Garnacha blanca, Viura de Rioja.'
21
+ - Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y poco
22
+ denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde,
23
+ melocotón, piña e hinojo.
24
+ - Vino blanco joven con buena acidez o un vino rosado afrutado.
25
+ - source_sentence: Pollo al curri rojo
26
+ sentences:
27
+ - 'Vino blanco afrutado de medio cuerpo, con aromas a melocotón, piña, uva, fruta
28
+ de la pasión, queroseno y flores. Ejemplos de variedades: los Verdejo de Rueda,
29
+ Valencia Moscatell, los Malvasía de Canarias, los Riesling de Alsacia i Alemania.
30
+ los Gerwüztraminer.'
31
+ - 'Vino blanco afrutado de medio cuerpo, con aromas a melocotón, piña, uva, fruta
32
+ de la pasión, queroseno y flores. Ejemplos de variedades: los Verdejo de Rueda,
33
+ Valencia Moscatell, los Malvasía de Canarias, los Riesling de Alsacia i Alemania.
34
+ los Gerwüztraminer.'
35
+ - Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y poco
36
+ denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde,
37
+ melocotón, piña e hinojo. O también vinos rosados ligeros, referescantes, delicados
38
+ y de color pálido. En boca son ligeros y de sabor delicado. Con aromas a fruta
39
+ roja silvestre, cítricos y herbáceos.
40
+ - source_sentence: Carnes blancas
41
+ sentences:
42
+ - ' Vinos blancos con cuerpo, amplios y sabrosos. En boca potentes, untuosos y densos
43
+ fruto del paso por barrica. Vinos blancos con intensidad aromática alta y con
44
+ aromas a manzana Golden, mantequilla, pan tostado, vainilla, frutos secos. Ejemplo:
45
+ Chardonnay, Garnacha blanca, Viura de Rioja. O también, Vinos rosados envejecidos
46
+ en barrica, y también los vinos elaborados a partir de Cabernet, Merlot o Syrah.
47
+ Vinos rosados redondos, afrutados, de color intenso y sabor potente y sabroso.
48
+ Con maceración de la piel.'
49
+ - Vino blanco con buena acidez y notas florales.
50
+ - ' Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y
51
+ poco denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde,
52
+ melocotón, piña e hinojo.'
53
+ - source_sentence: Chocolates o postres de cacao o café
54
+ sentences:
55
+ - 'Vinos tintos afrutados, jugosos y desenfadados. Con aromas a frutos rojos, lácticos.
56
+ pimienta, ciruela y mermeladas. Son vinos sencillos y amables, golosos y frescos
57
+ a partes iguales. '
58
+ - pedro ximenez, vinos de jerez, O también Vino tinto con mucha intensidad y potencia,
59
+ con notas a fruta tinta madura, notas a madera, notas a pimienta negra, a café,
60
+ cacao
61
+ - Vino blanco con buena acidez y notas de fruta blanca.
62
+ - source_sentence: Burger crujiente de zanahoria
63
+ sentences:
64
+ - Vino blanco joven con buena acidez o un vino rosado afrutado.
65
+ - ' Vino tinto con mucha intensidad y potencia, con notas a fruta tinta madura,
66
+ notas a madera, notas a pimienta negra, a café, cacao. Con presencia de taninos
67
+ bien integrados fruto del contacto con las pieles durante un largo período. Son
68
+ sabrosos, corpulentos, impactantes. Rioja o Ribera del Duero, Bordeus, Ródano '
69
+ - 'Vinos tintos ligeros con mucha acidez y poco volumen en boca, con notas de fruta
70
+ roja muy fresca, sin presencia de taninos; normalmente con notas verdes. ejemplos:
71
+ mencia, gammay, pinot noir'
72
+ ---
73
+
74
+ # SentenceTransformer based on Supabase/gte-small
75
+
76
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Supabase/gte-small](https://huggingface.co/Supabase/gte-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
77
+
78
+ ## Model Details
79
+
80
+ ### Model Description
81
+ - **Model Type:** Sentence Transformer
82
+ - **Base model:** [Supabase/gte-small](https://huggingface.co/Supabase/gte-small) <!-- at revision 93b36ff09519291b77d6000d2e86bd8565378086 -->
83
+ - **Maximum Sequence Length:** 512 tokens
84
+ - **Output Dimensionality:** 384 tokens
85
+ - **Similarity Function:** Cosine Similarity
86
+ <!-- - **Training Dataset:** Unknown -->
87
+ <!-- - **Language:** Unknown -->
88
+ <!-- - **License:** Unknown -->
89
+
90
+ ### Model Sources
91
+
92
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
93
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
94
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
95
+
96
+ ### Full Model Architecture
97
+
98
+ ```
99
+ SentenceTransformer(
100
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
101
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
102
+ )
103
+ ```
104
+
105
+ ## Usage
106
+
107
+ ### Direct Usage (Sentence Transformers)
108
+
109
+ First install the Sentence Transformers library:
110
+
111
+ ```bash
112
+ pip install -U sentence-transformers
113
+ ```
114
+
115
+ Then you can load this model and run inference.
116
+ ```python
117
+ from sentence_transformers import SentenceTransformer
118
+
119
+ # Download from the 🤗 Hub
120
+ model = SentenceTransformer("sentence_transformers_model_id")
121
+ # Run inference
122
+ sentences = [
123
+ 'Burger crujiente de zanahoria',
124
+ 'Vino blanco joven con buena acidez o un vino rosado afrutado.',
125
+ 'Vinos tintos ligeros con mucha acidez y poco volumen en boca, con notas de fruta roja muy fresca, sin presencia de taninos; normalmente con notas verdes. ejemplos: mencia, gammay, pinot noir',
126
+ ]
127
+ embeddings = model.encode(sentences)
128
+ print(embeddings.shape)
129
+ # [3, 384]
130
+
131
+ # Get the similarity scores for the embeddings
132
+ similarities = model.similarity(embeddings, embeddings)
133
+ print(similarities.shape)
134
+ # [3, 3]
135
+ ```
136
+
137
+ <!--
138
+ ### Direct Usage (Transformers)
139
+
140
+ <details><summary>Click to see the direct usage in Transformers</summary>
141
+
142
+ </details>
143
+ -->
144
+
145
+ <!--
146
+ ### Downstream Usage (Sentence Transformers)
147
+
148
+ You can finetune this model on your own dataset.
149
+
150
+ <details><summary>Click to expand</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Out-of-Scope Use
157
+
158
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
159
+ -->
160
+
161
+ <!--
162
+ ## Bias, Risks and Limitations
163
+
164
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
165
+ -->
166
+
167
+ <!--
168
+ ### Recommendations
169
+
170
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
171
+ -->
172
+
173
+ ## Training Details
174
+
175
+ ### Training Dataset
176
+
177
+ #### Unnamed Dataset
178
+
179
+
180
+ * Size: 68 training samples
181
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
182
+ * Approximate statistics based on the first 1000 samples:
183
+ | | sentence_0 | sentence_1 |
184
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
185
+ | type | string | string |
186
+ | details | <ul><li>min: 4 tokens</li><li>mean: 16.46 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 64.46 tokens</li><li>max: 178 tokens</li></ul> |
187
+ * Samples:
188
+ | sentence_0 | sentence_1 |
189
+ |:---------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
190
+ | <code>Nuggets de pollo rebozados en tempura</code> | <code>Vino blanco joven con buena acidez o un vino rosado afrutado.</code> |
191
+ | <code>Paellas de mar, paella marinera.</code> | <code> Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y poco denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde, melocotón, piña e hinojo.</code> |
192
+ | <code>Fideos de arroz con pollo</code> | <code>Vino blanco seco, ligero, refrescante, delicado y sauve. Con sabor ligero y poco denso, acostumbran a ser vinos jóvenes. Con aromas a cítricos, manzana verde, melocotón, piña e hinojo.</code> |
193
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
194
+ ```json
195
+ {
196
+ "scale": 20.0,
197
+ "similarity_fct": "cos_sim"
198
+ }
199
+ ```
200
+
201
+ ### Training Hyperparameters
202
+ #### Non-Default Hyperparameters
203
+
204
+ - `per_device_train_batch_size`: 4
205
+ - `per_device_eval_batch_size`: 4
206
+ - `num_train_epochs`: 30
207
+ - `multi_dataset_batch_sampler`: round_robin
208
+
209
+ #### All Hyperparameters
210
+ <details><summary>Click to expand</summary>
211
+
212
+ - `overwrite_output_dir`: False
213
+ - `do_predict`: False
214
+ - `eval_strategy`: no
215
+ - `prediction_loss_only`: True
216
+ - `per_device_train_batch_size`: 4
217
+ - `per_device_eval_batch_size`: 4
218
+ - `per_gpu_train_batch_size`: None
219
+ - `per_gpu_eval_batch_size`: None
220
+ - `gradient_accumulation_steps`: 1
221
+ - `eval_accumulation_steps`: None
222
+ - `learning_rate`: 5e-05
223
+ - `weight_decay`: 0.0
224
+ - `adam_beta1`: 0.9
225
+ - `adam_beta2`: 0.999
226
+ - `adam_epsilon`: 1e-08
227
+ - `max_grad_norm`: 1
228
+ - `num_train_epochs`: 30
229
+ - `max_steps`: -1
230
+ - `lr_scheduler_type`: linear
231
+ - `lr_scheduler_kwargs`: {}
232
+ - `warmup_ratio`: 0.0
233
+ - `warmup_steps`: 0
234
+ - `log_level`: passive
235
+ - `log_level_replica`: warning
236
+ - `log_on_each_node`: True
237
+ - `logging_nan_inf_filter`: True
238
+ - `save_safetensors`: True
239
+ - `save_on_each_node`: False
240
+ - `save_only_model`: False
241
+ - `restore_callback_states_from_checkpoint`: False
242
+ - `no_cuda`: False
243
+ - `use_cpu`: False
244
+ - `use_mps_device`: False
245
+ - `seed`: 42
246
+ - `data_seed`: None
247
+ - `jit_mode_eval`: False
248
+ - `use_ipex`: False
249
+ - `bf16`: False
250
+ - `fp16`: False
251
+ - `fp16_opt_level`: O1
252
+ - `half_precision_backend`: auto
253
+ - `bf16_full_eval`: False
254
+ - `fp16_full_eval`: False
255
+ - `tf32`: None
256
+ - `local_rank`: 0
257
+ - `ddp_backend`: None
258
+ - `tpu_num_cores`: None
259
+ - `tpu_metrics_debug`: False
260
+ - `debug`: []
261
+ - `dataloader_drop_last`: False
262
+ - `dataloader_num_workers`: 0
263
+ - `dataloader_prefetch_factor`: None
264
+ - `past_index`: -1
265
+ - `disable_tqdm`: False
266
+ - `remove_unused_columns`: True
267
+ - `label_names`: None
268
+ - `load_best_model_at_end`: False
269
+ - `ignore_data_skip`: False
270
+ - `fsdp`: []
271
+ - `fsdp_min_num_params`: 0
272
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
273
+ - `fsdp_transformer_layer_cls_to_wrap`: None
274
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
275
+ - `deepspeed`: None
276
+ - `label_smoothing_factor`: 0.0
277
+ - `optim`: adamw_torch
278
+ - `optim_args`: None
279
+ - `adafactor`: False
280
+ - `group_by_length`: False
281
+ - `length_column_name`: length
282
+ - `ddp_find_unused_parameters`: None
283
+ - `ddp_bucket_cap_mb`: None
284
+ - `ddp_broadcast_buffers`: False
285
+ - `dataloader_pin_memory`: True
286
+ - `dataloader_persistent_workers`: False
287
+ - `skip_memory_metrics`: True
288
+ - `use_legacy_prediction_loop`: False
289
+ - `push_to_hub`: False
290
+ - `resume_from_checkpoint`: None
291
+ - `hub_model_id`: None
292
+ - `hub_strategy`: every_save
293
+ - `hub_private_repo`: False
294
+ - `hub_always_push`: False
295
+ - `gradient_checkpointing`: False
296
+ - `gradient_checkpointing_kwargs`: None
297
+ - `include_inputs_for_metrics`: False
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `dispatch_batches`: None
312
+ - `split_batches`: None
313
+ - `include_tokens_per_second`: False
314
+ - `include_num_input_tokens_seen`: False
315
+ - `neftune_noise_alpha`: None
316
+ - `optim_target_modules`: None
317
+ - `batch_eval_metrics`: False
318
+ - `eval_on_start`: False
319
+ - `batch_sampler`: batch_sampler
320
+ - `multi_dataset_batch_sampler`: round_robin
321
+
322
+ </details>
323
+
324
+ ### Training Logs
325
+ | Epoch | Step | Training Loss |
326
+ |:-------:|:----:|:-------------:|
327
+ | 29.4118 | 500 | 0.2567 |
328
+
329
+
330
+ ### Framework Versions
331
+ - Python: 3.10.12
332
+ - Sentence Transformers: 3.0.1
333
+ - Transformers: 4.42.4
334
+ - PyTorch: 2.3.1+cu121
335
+ - Accelerate: 0.32.1
336
+ - Datasets: 2.20.0
337
+ - Tokenizers: 0.19.1
338
+
339
+ ## Citation
340
+
341
+ ### BibTeX
342
+
343
+ #### Sentence Transformers
344
+ ```bibtex
345
+ @inproceedings{reimers-2019-sentence-bert,
346
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
347
+ author = "Reimers, Nils and Gurevych, Iryna",
348
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
349
+ month = "11",
350
+ year = "2019",
351
+ publisher = "Association for Computational Linguistics",
352
+ url = "https://arxiv.org/abs/1908.10084",
353
+ }
354
+ ```
355
+
356
+ #### MultipleNegativesRankingLoss
357
+ ```bibtex
358
+ @misc{henderson2017efficient,
359
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
360
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
361
+ year={2017},
362
+ eprint={1705.00652},
363
+ archivePrefix={arXiv},
364
+ primaryClass={cs.CL}
365
+ }
366
+ ```
367
+
368
+ <!--
369
+ ## Glossary
370
+
371
+ *Clearly define terms in order to be accessible across audiences.*
372
+ -->
373
+
374
+ <!--
375
+ ## Model Card Authors
376
+
377
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
378
+ -->
379
+
380
+ <!--
381
+ ## Model Card Contact
382
+
383
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
384
+ -->
config.json CHANGED
@@ -1,170 +1,15 @@
1
  {
2
- "_name_or_path": "/content/model/",
3
  "architectures": [
4
- "BertForSequenceClassification"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "classifier_dropout": null,
8
- "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
- "id2label": {
13
- "0": "LABEL_0",
14
- "1": "LABEL_1",
15
- "2": "LABEL_2",
16
- "3": "LABEL_3",
17
- "4": "LABEL_4",
18
- "5": "LABEL_5",
19
- "6": "LABEL_6",
20
- "7": "LABEL_7",
21
- "8": "LABEL_8",
22
- "9": "LABEL_9",
23
- "10": "LABEL_10",
24
- "11": "LABEL_11",
25
- "12": "LABEL_12",
26
- "13": "LABEL_13",
27
- "14": "LABEL_14",
28
- "15": "LABEL_15",
29
- "16": "LABEL_16",
30
- "17": "LABEL_17",
31
- "18": "LABEL_18",
32
- "19": "LABEL_19",
33
- "20": "LABEL_20",
34
- "21": "LABEL_21",
35
- "22": "LABEL_22",
36
- "23": "LABEL_23",
37
- "24": "LABEL_24",
38
- "25": "LABEL_25",
39
- "26": "LABEL_26",
40
- "27": "LABEL_27",
41
- "28": "LABEL_28",
42
- "29": "LABEL_29",
43
- "30": "LABEL_30",
44
- "31": "LABEL_31",
45
- "32": "LABEL_32",
46
- "33": "LABEL_33",
47
- "34": "LABEL_34",
48
- "35": "LABEL_35",
49
- "36": "LABEL_36",
50
- "37": "LABEL_37",
51
- "38": "LABEL_38",
52
- "39": "LABEL_39",
53
- "40": "LABEL_40",
54
- "41": "LABEL_41",
55
- "42": "LABEL_42",
56
- "43": "LABEL_43",
57
- "44": "LABEL_44",
58
- "45": "LABEL_45",
59
- "46": "LABEL_46",
60
- "47": "LABEL_47",
61
- "48": "LABEL_48",
62
- "49": "LABEL_49",
63
- "50": "LABEL_50",
64
- "51": "LABEL_51",
65
- "52": "LABEL_52",
66
- "53": "LABEL_53",
67
- "54": "LABEL_54",
68
- "55": "LABEL_55",
69
- "56": "LABEL_56",
70
- "57": "LABEL_57",
71
- "58": "LABEL_58",
72
- "59": "LABEL_59",
73
- "60": "LABEL_60",
74
- "61": "LABEL_61",
75
- "62": "LABEL_62",
76
- "63": "LABEL_63",
77
- "64": "LABEL_64",
78
- "65": "LABEL_65",
79
- "66": "LABEL_66",
80
- "67": "LABEL_67",
81
- "68": "LABEL_68",
82
- "69": "LABEL_69",
83
- "70": "LABEL_70",
84
- "71": "LABEL_71",
85
- "72": "LABEL_72",
86
- "73": "LABEL_73",
87
- "74": "LABEL_74"
88
- },
89
  "initializer_range": 0.02,
90
- "intermediate_size": 3072,
91
- "label2id": {
92
- "LABEL_0": 0,
93
- "LABEL_1": 1,
94
- "LABEL_10": 10,
95
- "LABEL_11": 11,
96
- "LABEL_12": 12,
97
- "LABEL_13": 13,
98
- "LABEL_14": 14,
99
- "LABEL_15": 15,
100
- "LABEL_16": 16,
101
- "LABEL_17": 17,
102
- "LABEL_18": 18,
103
- "LABEL_19": 19,
104
- "LABEL_2": 2,
105
- "LABEL_20": 20,
106
- "LABEL_21": 21,
107
- "LABEL_22": 22,
108
- "LABEL_23": 23,
109
- "LABEL_24": 24,
110
- "LABEL_25": 25,
111
- "LABEL_26": 26,
112
- "LABEL_27": 27,
113
- "LABEL_28": 28,
114
- "LABEL_29": 29,
115
- "LABEL_3": 3,
116
- "LABEL_30": 30,
117
- "LABEL_31": 31,
118
- "LABEL_32": 32,
119
- "LABEL_33": 33,
120
- "LABEL_34": 34,
121
- "LABEL_35": 35,
122
- "LABEL_36": 36,
123
- "LABEL_37": 37,
124
- "LABEL_38": 38,
125
- "LABEL_39": 39,
126
- "LABEL_4": 4,
127
- "LABEL_40": 40,
128
- "LABEL_41": 41,
129
- "LABEL_42": 42,
130
- "LABEL_43": 43,
131
- "LABEL_44": 44,
132
- "LABEL_45": 45,
133
- "LABEL_46": 46,
134
- "LABEL_47": 47,
135
- "LABEL_48": 48,
136
- "LABEL_49": 49,
137
- "LABEL_5": 5,
138
- "LABEL_50": 50,
139
- "LABEL_51": 51,
140
- "LABEL_52": 52,
141
- "LABEL_53": 53,
142
- "LABEL_54": 54,
143
- "LABEL_55": 55,
144
- "LABEL_56": 56,
145
- "LABEL_57": 57,
146
- "LABEL_58": 58,
147
- "LABEL_59": 59,
148
- "LABEL_6": 6,
149
- "LABEL_60": 60,
150
- "LABEL_61": 61,
151
- "LABEL_62": 62,
152
- "LABEL_63": 63,
153
- "LABEL_64": 64,
154
- "LABEL_65": 65,
155
- "LABEL_66": 66,
156
- "LABEL_67": 67,
157
- "LABEL_68": 68,
158
- "LABEL_69": 69,
159
- "LABEL_7": 7,
160
- "LABEL_70": 70,
161
- "LABEL_71": 71,
162
- "LABEL_72": 72,
163
- "LABEL_73": 73,
164
- "LABEL_74": 74,
165
- "LABEL_8": 8,
166
- "LABEL_9": 9
167
- },
168
  "layer_norm_eps": 1e-12,
169
  "max_position_embeddings": 512,
170
  "model_type": "bert",
@@ -172,9 +17,8 @@
172
  "num_hidden_layers": 12,
173
  "pad_token_id": 0,
174
  "position_embedding_type": "absolute",
175
- "problem_type": "single_label_classification",
176
  "torch_dtype": "float32",
177
- "transformers_version": "4.44.0",
178
  "type_vocab_size": 2,
179
  "use_cache": true,
180
  "vocab_size": 30522
 
1
  {
2
+ "_name_or_path": "Supabase/gte-small",
3
  "architectures": [
4
+ "BertModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
  "classifier_dropout": null,
 
8
  "hidden_act": "gelu",
9
  "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  "layer_norm_eps": 1e-12,
14
  "max_position_embeddings": 512,
15
  "model_type": "bert",
 
17
  "num_hidden_layers": 12,
18
  "pad_token_id": 0,
19
  "position_embedding_type": "absolute",
 
20
  "torch_dtype": "float32",
21
+ "transformers_version": "4.42.4",
22
  "type_vocab_size": 2,
23
  "use_cache": true,
24
  "vocab_size": 30522
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5bd9b4a97244eb84bf01d3a64ae4e1412e05664406e342532220818d14999784
3
- size 438183196
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2610323da0dc0a62abc91c9ec5403938d54bb29a260a0fb90a30361eb2b2a401
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json CHANGED
@@ -1,7 +1,37 @@
1
  {
2
- "cls_token": "[CLS]",
3
- "mask_token": "[MASK]",
4
- "pad_token": "[PAD]",
5
- "sep_token": "[SEP]",
6
- "unk_token": "[UNK]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  }
 
1
  {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
  }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -46,12 +46,19 @@
46
  "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
  "mask_token": "[MASK]",
 
49
  "model_max_length": 512,
50
  "never_split": null,
 
51
  "pad_token": "[PAD]",
 
 
52
  "sep_token": "[SEP]",
 
53
  "strip_accents": null,
54
  "tokenize_chinese_chars": true,
55
  "tokenizer_class": "BertTokenizer",
 
 
56
  "unk_token": "[UNK]"
57
  }
 
46
  "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
  "mask_token": "[MASK]",
49
+ "max_length": 128,
50
  "model_max_length": 512,
51
  "never_split": null,
52
+ "pad_to_multiple_of": null,
53
  "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
  "sep_token": "[SEP]",
57
+ "stride": 0,
58
  "strip_accents": null,
59
  "tokenize_chinese_chars": true,
60
  "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
  "unk_token": "[UNK]"
64
  }