--- license: mit base_model: law-ai/InLegalBERT tags: - generated_from_trainer metrics: - accuracy model-index: - name: InLegalBERT-lora-text-classification results: [] --- # InLegalBERT-lora-text-classification This model is a fine-tuned version of [law-ai/InLegalBERT](https://huggingface.co/law-ai/InLegalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0550 - Accuracy: {'accuracy': 0.6449893390191898} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:| | No log | 1.0 | 235 | 1.1448 | {'accuracy': 0.6151385927505331} | | No log | 2.0 | 470 | 1.0553 | {'accuracy': 0.6380597014925373} | | 1.2222 | 3.0 | 705 | 1.0427 | {'accuracy': 0.6316631130063965} | | 1.2222 | 4.0 | 940 | 1.0490 | {'accuracy': 0.6428571428571429} | | 0.8111 | 5.0 | 1175 | 1.0550 | {'accuracy': 0.6449893390191898} | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1