Add new CrossEncoder model
Browse files- README.md +256 -35
- config.json +1 -1
- model.safetensors +2 -2
README.md
CHANGED
@@ -1,24 +1,49 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- sentence-transformers
|
4 |
-
-
|
5 |
-
-
|
6 |
-
|
|
|
|
|
|
|
7 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [
|
13 |
|
14 |
## Model Details
|
15 |
|
16 |
### Model Description
|
17 |
-
- **Model Type:**
|
18 |
-
|
19 |
- **Maximum Sequence Length:** 512 tokens
|
20 |
-
- **Output
|
21 |
-
- **Similarity Function:** Cosine Similarity
|
22 |
<!-- - **Training Dataset:** Unknown -->
|
23 |
<!-- - **Language:** Unknown -->
|
24 |
<!-- - **License:** Unknown -->
|
@@ -26,17 +51,9 @@ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps
|
|
26 |
### Model Sources
|
27 |
|
28 |
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
|
29 |
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
30 |
-
- **Hugging Face:** [
|
31 |
-
|
32 |
-
### Full Model Architecture
|
33 |
-
|
34 |
-
```
|
35 |
-
SentenceTransformer(
|
36 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
37 |
-
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
38 |
-
)
|
39 |
-
```
|
40 |
|
41 |
## Usage
|
42 |
|
@@ -50,24 +67,34 @@ pip install -U sentence-transformers
|
|
50 |
|
51 |
Then you can load this model and run inference.
|
52 |
```python
|
53 |
-
from sentence_transformers import
|
54 |
|
55 |
# Download from the 🤗 Hub
|
56 |
-
model =
|
57 |
-
#
|
58 |
-
|
59 |
-
'
|
60 |
-
"
|
61 |
-
'
|
|
|
|
|
62 |
]
|
63 |
-
|
64 |
-
print(
|
65 |
-
#
|
66 |
-
|
67 |
-
#
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
```
|
72 |
|
73 |
<!--
|
@@ -94,6 +121,26 @@ You can finetune this model on your own dataset.
|
|
94 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
95 |
-->
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
<!--
|
98 |
## Bias, Risks and Limitations
|
99 |
|
@@ -108,19 +155,193 @@ You can finetune this model on your own dataset.
|
|
108 |
|
109 |
## Training Details
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
### Framework Versions
|
112 |
- Python: 3.11.12
|
113 |
- Sentence Transformers: 4.1.0
|
114 |
- Transformers: 4.51.3
|
115 |
- PyTorch: 2.6.0+cu124
|
116 |
- Accelerate: 1.6.0
|
117 |
-
- Datasets:
|
118 |
- Tokenizers: 0.21.1
|
119 |
|
120 |
## Citation
|
121 |
|
122 |
### BibTeX
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
<!--
|
125 |
## Glossary
|
126 |
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- sentence-transformers
|
4 |
+
- cross-encoder
|
5 |
+
- generated_from_trainer
|
6 |
+
- dataset_size:22258
|
7 |
+
- loss:FitMixinLoss
|
8 |
+
base_model: cross-encoder/ms-marco-MiniLM-L6-v2
|
9 |
+
pipeline_tag: text-ranking
|
10 |
library_name: sentence-transformers
|
11 |
+
metrics:
|
12 |
+
- map
|
13 |
+
- mrr@10
|
14 |
+
- ndcg@10
|
15 |
+
model-index:
|
16 |
+
- name: CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: cross-encoder-reranking
|
20 |
+
name: Cross Encoder Reranking
|
21 |
+
dataset:
|
22 |
+
name: cross rerank dev mixed neg
|
23 |
+
type: cross-rerank-dev-mixed-neg
|
24 |
+
metrics:
|
25 |
+
- type: map
|
26 |
+
value: 0.4873053613053613
|
27 |
+
name: Map
|
28 |
+
- type: mrr@10
|
29 |
+
value: 0.48394871794871797
|
30 |
+
name: Mrr@10
|
31 |
+
- type: ndcg@10
|
32 |
+
value: 0.5970778430138177
|
33 |
+
name: Ndcg@10
|
34 |
---
|
35 |
|
36 |
+
# CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2
|
37 |
|
38 |
+
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
|
39 |
|
40 |
## Model Details
|
41 |
|
42 |
### Model Description
|
43 |
+
- **Model Type:** Cross Encoder
|
44 |
+
- **Base model:** [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) <!-- at revision ce0834f22110de6d9222af7a7a03628121708969 -->
|
45 |
- **Maximum Sequence Length:** 512 tokens
|
46 |
+
- **Number of Output Labels:** 1 label
|
|
|
47 |
<!-- - **Training Dataset:** Unknown -->
|
48 |
<!-- - **Language:** Unknown -->
|
49 |
<!-- - **License:** Unknown -->
|
|
|
51 |
### Model Sources
|
52 |
|
53 |
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
54 |
+
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
|
55 |
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
56 |
+
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
## Usage
|
59 |
|
|
|
67 |
|
68 |
Then you can load this model and run inference.
|
69 |
```python
|
70 |
+
from sentence_transformers import CrossEncoder
|
71 |
|
72 |
# Download from the 🤗 Hub
|
73 |
+
model = CrossEncoder("CharlesPing/finetuned-cross-encoder-l6-v2")
|
74 |
+
# Get scores for pairs of texts
|
75 |
+
pairs = [
|
76 |
+
['‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”', 'Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".'],
|
77 |
+
['After the 9/11 terrorist attacks grounded commercial air traffic, "there was a temperature drop while the airplanes weren\'t flying, for the week afterwards."', 'Play media At 9:42\xa0a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.'],
|
78 |
+
['But the central message of the IPCC AR4, is confirmed by the peer reviewed literature.', 'Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.'],
|
79 |
+
['"Many people think the science of climate change is settled.', 'During his administration, the bridge from Filadelfia and Liberia was constructed, as was the Old National Theater.'],
|
80 |
+
['“Even if you could calculate some sort of meaningful global temperature statistic, the figure would be unimportant.', 'Quantitative information or data is based on quantities obtained using a quantifiable measurement process.'],
|
81 |
]
|
82 |
+
scores = model.predict(pairs)
|
83 |
+
print(scores.shape)
|
84 |
+
# (5,)
|
85 |
+
|
86 |
+
# Or rank different texts based on similarity to a single text
|
87 |
+
ranks = model.rank(
|
88 |
+
'‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”',
|
89 |
+
[
|
90 |
+
'Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".',
|
91 |
+
'Play media At 9:42\xa0a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.',
|
92 |
+
'Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.',
|
93 |
+
'During his administration, the bridge from Filadelfia and Liberia was constructed, as was the Old National Theater.',
|
94 |
+
'Quantitative information or data is based on quantities obtained using a quantifiable measurement process.',
|
95 |
+
]
|
96 |
+
)
|
97 |
+
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
|
98 |
```
|
99 |
|
100 |
<!--
|
|
|
121 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
122 |
-->
|
123 |
|
124 |
+
## Evaluation
|
125 |
+
|
126 |
+
### Metrics
|
127 |
+
|
128 |
+
#### Cross Encoder Reranking
|
129 |
+
|
130 |
+
* Dataset: `cross-rerank-dev-mixed-neg`
|
131 |
+
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
|
132 |
+
```json
|
133 |
+
{
|
134 |
+
"at_k": 10
|
135 |
+
}
|
136 |
+
```
|
137 |
+
|
138 |
+
| Metric | Value |
|
139 |
+
|:------------|:-----------|
|
140 |
+
| map | 0.4873 |
|
141 |
+
| mrr@10 | 0.4839 |
|
142 |
+
| **ndcg@10** | **0.5971** |
|
143 |
+
|
144 |
<!--
|
145 |
## Bias, Risks and Limitations
|
146 |
|
|
|
155 |
|
156 |
## Training Details
|
157 |
|
158 |
+
### Training Dataset
|
159 |
+
|
160 |
+
#### Unnamed Dataset
|
161 |
+
|
162 |
+
* Size: 22,258 training samples
|
163 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
164 |
+
* Approximate statistics based on the first 1000 samples:
|
165 |
+
| | sentence_0 | sentence_1 | label |
|
166 |
+
|:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
167 |
+
| type | string | string | float |
|
168 |
+
| details | <ul><li>min: 26 characters</li><li>mean: 121.91 characters</li><li>max: 319 characters</li></ul> | <ul><li>min: 36 characters</li><li>mean: 140.85 characters</li><li>max: 573 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.16</li><li>max: 1.0</li></ul> |
|
169 |
+
* Samples:
|
170 |
+
| sentence_0 | sentence_1 | label |
|
171 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
172 |
+
| <code>‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”</code> | <code>Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".</code> | <code>1.0</code> |
|
173 |
+
| <code>After the 9/11 terrorist attacks grounded commercial air traffic, "there was a temperature drop while the airplanes weren't flying, for the week afterwards."</code> | <code>Play media At 9:42 a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.</code> | <code>1.0</code> |
|
174 |
+
| <code>But the central message of the IPCC AR4, is confirmed by the peer reviewed literature.</code> | <code>Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.</code> | <code>1.0</code> |
|
175 |
+
* Loss: [<code>FitMixinLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#fitmixinloss)
|
176 |
+
|
177 |
+
### Training Hyperparameters
|
178 |
+
#### Non-Default Hyperparameters
|
179 |
+
|
180 |
+
- `eval_strategy`: steps
|
181 |
+
- `per_device_train_batch_size`: 16
|
182 |
+
- `per_device_eval_batch_size`: 16
|
183 |
+
|
184 |
+
#### All Hyperparameters
|
185 |
+
<details><summary>Click to expand</summary>
|
186 |
+
|
187 |
+
- `overwrite_output_dir`: False
|
188 |
+
- `do_predict`: False
|
189 |
+
- `eval_strategy`: steps
|
190 |
+
- `prediction_loss_only`: True
|
191 |
+
- `per_device_train_batch_size`: 16
|
192 |
+
- `per_device_eval_batch_size`: 16
|
193 |
+
- `per_gpu_train_batch_size`: None
|
194 |
+
- `per_gpu_eval_batch_size`: None
|
195 |
+
- `gradient_accumulation_steps`: 1
|
196 |
+
- `eval_accumulation_steps`: None
|
197 |
+
- `torch_empty_cache_steps`: None
|
198 |
+
- `learning_rate`: 5e-05
|
199 |
+
- `weight_decay`: 0.0
|
200 |
+
- `adam_beta1`: 0.9
|
201 |
+
- `adam_beta2`: 0.999
|
202 |
+
- `adam_epsilon`: 1e-08
|
203 |
+
- `max_grad_norm`: 1
|
204 |
+
- `num_train_epochs`: 3
|
205 |
+
- `max_steps`: -1
|
206 |
+
- `lr_scheduler_type`: linear
|
207 |
+
- `lr_scheduler_kwargs`: {}
|
208 |
+
- `warmup_ratio`: 0.0
|
209 |
+
- `warmup_steps`: 0
|
210 |
+
- `log_level`: passive
|
211 |
+
- `log_level_replica`: warning
|
212 |
+
- `log_on_each_node`: True
|
213 |
+
- `logging_nan_inf_filter`: True
|
214 |
+
- `save_safetensors`: True
|
215 |
+
- `save_on_each_node`: False
|
216 |
+
- `save_only_model`: False
|
217 |
+
- `restore_callback_states_from_checkpoint`: False
|
218 |
+
- `no_cuda`: False
|
219 |
+
- `use_cpu`: False
|
220 |
+
- `use_mps_device`: False
|
221 |
+
- `seed`: 42
|
222 |
+
- `data_seed`: None
|
223 |
+
- `jit_mode_eval`: False
|
224 |
+
- `use_ipex`: False
|
225 |
+
- `bf16`: False
|
226 |
+
- `fp16`: False
|
227 |
+
- `fp16_opt_level`: O1
|
228 |
+
- `half_precision_backend`: auto
|
229 |
+
- `bf16_full_eval`: False
|
230 |
+
- `fp16_full_eval`: False
|
231 |
+
- `tf32`: None
|
232 |
+
- `local_rank`: 0
|
233 |
+
- `ddp_backend`: None
|
234 |
+
- `tpu_num_cores`: None
|
235 |
+
- `tpu_metrics_debug`: False
|
236 |
+
- `debug`: []
|
237 |
+
- `dataloader_drop_last`: False
|
238 |
+
- `dataloader_num_workers`: 0
|
239 |
+
- `dataloader_prefetch_factor`: None
|
240 |
+
- `past_index`: -1
|
241 |
+
- `disable_tqdm`: False
|
242 |
+
- `remove_unused_columns`: True
|
243 |
+
- `label_names`: None
|
244 |
+
- `load_best_model_at_end`: False
|
245 |
+
- `ignore_data_skip`: False
|
246 |
+
- `fsdp`: []
|
247 |
+
- `fsdp_min_num_params`: 0
|
248 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
249 |
+
- `tp_size`: 0
|
250 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
251 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
252 |
+
- `deepspeed`: None
|
253 |
+
- `label_smoothing_factor`: 0.0
|
254 |
+
- `optim`: adamw_torch
|
255 |
+
- `optim_args`: None
|
256 |
+
- `adafactor`: False
|
257 |
+
- `group_by_length`: False
|
258 |
+
- `length_column_name`: length
|
259 |
+
- `ddp_find_unused_parameters`: None
|
260 |
+
- `ddp_bucket_cap_mb`: None
|
261 |
+
- `ddp_broadcast_buffers`: False
|
262 |
+
- `dataloader_pin_memory`: True
|
263 |
+
- `dataloader_persistent_workers`: False
|
264 |
+
- `skip_memory_metrics`: True
|
265 |
+
- `use_legacy_prediction_loop`: False
|
266 |
+
- `push_to_hub`: False
|
267 |
+
- `resume_from_checkpoint`: None
|
268 |
+
- `hub_model_id`: None
|
269 |
+
- `hub_strategy`: every_save
|
270 |
+
- `hub_private_repo`: None
|
271 |
+
- `hub_always_push`: False
|
272 |
+
- `gradient_checkpointing`: False
|
273 |
+
- `gradient_checkpointing_kwargs`: None
|
274 |
+
- `include_inputs_for_metrics`: False
|
275 |
+
- `include_for_metrics`: []
|
276 |
+
- `eval_do_concat_batches`: True
|
277 |
+
- `fp16_backend`: auto
|
278 |
+
- `push_to_hub_model_id`: None
|
279 |
+
- `push_to_hub_organization`: None
|
280 |
+
- `mp_parameters`:
|
281 |
+
- `auto_find_batch_size`: False
|
282 |
+
- `full_determinism`: False
|
283 |
+
- `torchdynamo`: None
|
284 |
+
- `ray_scope`: last
|
285 |
+
- `ddp_timeout`: 1800
|
286 |
+
- `torch_compile`: False
|
287 |
+
- `torch_compile_backend`: None
|
288 |
+
- `torch_compile_mode`: None
|
289 |
+
- `include_tokens_per_second`: False
|
290 |
+
- `include_num_input_tokens_seen`: False
|
291 |
+
- `neftune_noise_alpha`: None
|
292 |
+
- `optim_target_modules`: None
|
293 |
+
- `batch_eval_metrics`: False
|
294 |
+
- `eval_on_start`: False
|
295 |
+
- `use_liger_kernel`: False
|
296 |
+
- `eval_use_gather_object`: False
|
297 |
+
- `average_tokens_across_devices`: False
|
298 |
+
- `prompts`: None
|
299 |
+
- `batch_sampler`: batch_sampler
|
300 |
+
- `multi_dataset_batch_sampler`: proportional
|
301 |
+
|
302 |
+
</details>
|
303 |
+
|
304 |
+
### Training Logs
|
305 |
+
| Epoch | Step | Training Loss | cross-rerank-dev-mixed-neg_ndcg@10 |
|
306 |
+
|:------:|:----:|:-------------:|:----------------------------------:|
|
307 |
+
| 0.3592 | 500 | 0.4259 | 0.5154 |
|
308 |
+
| 0.7184 | 1000 | 0.3346 | 0.5497 |
|
309 |
+
| 1.0 | 1392 | - | 0.5640 |
|
310 |
+
| 1.0776 | 1500 | 0.3171 | 0.5660 |
|
311 |
+
| 1.4368 | 2000 | 0.2826 | 0.5669 |
|
312 |
+
| 1.7960 | 2500 | 0.281 | 0.5802 |
|
313 |
+
| 2.0 | 2784 | - | 0.5834 |
|
314 |
+
| 2.1552 | 3000 | 0.2553 | 0.5842 |
|
315 |
+
| 2.5144 | 3500 | 0.2326 | 0.5961 |
|
316 |
+
| 2.8736 | 4000 | 0.2408 | 0.5971 |
|
317 |
+
|
318 |
+
|
319 |
### Framework Versions
|
320 |
- Python: 3.11.12
|
321 |
- Sentence Transformers: 4.1.0
|
322 |
- Transformers: 4.51.3
|
323 |
- PyTorch: 2.6.0+cu124
|
324 |
- Accelerate: 1.6.0
|
325 |
+
- Datasets: 3.5.1
|
326 |
- Tokenizers: 0.21.1
|
327 |
|
328 |
## Citation
|
329 |
|
330 |
### BibTeX
|
331 |
|
332 |
+
#### Sentence Transformers
|
333 |
+
```bibtex
|
334 |
+
@inproceedings{reimers-2019-sentence-bert,
|
335 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
336 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
337 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
338 |
+
month = "11",
|
339 |
+
year = "2019",
|
340 |
+
publisher = "Association for Computational Linguistics",
|
341 |
+
url = "https://arxiv.org/abs/1908.10084",
|
342 |
+
}
|
343 |
+
```
|
344 |
+
|
345 |
<!--
|
346 |
## Glossary
|
347 |
|
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"classifier_dropout": null,
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
],
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"classifier_dropout": null,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bafddd7c2f5c1337838bd6699c67487afdd865a9e71bca20d6754a95520b0614
|
3 |
+
size 90866412
|