Update README.md
Browse files
README.md
CHANGED
@@ -12,23 +12,28 @@ pipeline_tag: text-classification
|
|
12 |
tags:
|
13 |
- medical
|
14 |
model_description: >-
|
15 |
-
This
|
16 |
-
|
17 |
-
FacebookAI/xlm-roberta-base model.
|
18 |
-
|
19 |
'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire',
|
20 |
'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement',
|
21 |
'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism',
|
22 |
'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise',
|
23 |
-
'neutral'
|
24 |
---
|
25 |
# Model Card for German-Emotions
|
26 |
|
27 |
-
|
|
|
28 |
|
|
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
|
|
32 |
|
33 |
- **Model type:** text-classification
|
34 |
- **Language(s) (NLP):** German
|
@@ -43,7 +48,6 @@ This is basically the German translation of arpanghoshal/EmoRoBERTa. We used the
|
|
43 |
- f1: 0.45
|
44 |
- kappa: 0.42
|
45 |
---
|
46 |
-
|
47 |
## Classification Metrics
|
48 |
|
49 |
| Emotion | Sentiment | F1 | Cohen’s Kappa |
|
|
|
12 |
tags:
|
13 |
- medical
|
14 |
model_description: >-
|
15 |
+
This model was fine-tuned on the German translation of the go_emotions dataset.
|
16 |
+
It is designed to classify German text across 27 emotions (and a "neutral" category).
|
17 |
+
The model is fine-tuned on the FacebookAI/xlm-roberta-base model.
|
18 |
+
It contains the following emotions: 'admiration', 'amusement', 'anger',
|
19 |
'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire',
|
20 |
'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement',
|
21 |
'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism',
|
22 |
'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise',
|
23 |
+
'neutral'.
|
24 |
---
|
25 |
# Model Card for German-Emotions
|
26 |
|
27 |
+
# German-Emotions
|
28 |
+
This model is designed to infer 27 emotions and a *neutral* category from German text. It is a fine-tuned version of **FacebookAI/xlm-roberta-base**, trained on the **German translation** of the [GoEmotions dataset](https://huggingface.co/datasets/google-research-datasets/go_emotions).
|
29 |
|
30 |
+
The original GoEmotions dataset contains 53.4k English Reddit comments labeled with one or more emotions. For this model, the data was translated into German and used to fine-tune the multilingual XLM-RoBERTa base model (270M parameters), which was pretrained on 2.5TB of CommonCrawl data across 100 languages, including German.
|
31 |
|
32 |
+
For additional information, please see the reference at the bottom of this page.
|
33 |
+
### Supported Emotion Labels
|
34 |
+
*admiration*, *amusement*, *anger*, *annoyance*, *approval*, *caring*, *confusion*, *curiosity*, *desire*, *disappointment*, *disapproval*, *disgust*, *embarrassment*, *excitement*, *fear*, *gratitude*, *grief*, *joy*, *love*, *nervousness*, *optimism*, *pride*, *realization*, *relief*, *remorse*, *sadness*, *surprise*, *neutral*
|
35 |
|
36 |
+
## Model Details
|
37 |
|
38 |
- **Model type:** text-classification
|
39 |
- **Language(s) (NLP):** German
|
|
|
48 |
- f1: 0.45
|
49 |
- kappa: 0.42
|
50 |
---
|
|
|
51 |
## Classification Metrics
|
52 |
|
53 |
| Emotion | Sentiment | F1 | Cohen’s Kappa |
|