File size: 9,653 Bytes
b4f6221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
# The OnlySports Collection - https://huggingface.co/collections/Chrisneverdie/onlysports-66b3e5cf595eb81220cc27a6
########################################################################################################

import numpy as np
np.set_printoptions(precision=4, suppress=True, linewidth=200)
import types, torch
import torch.nn as nn
from torch.nn import functional as F
import os


MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method

class RWKV_TOKENIZER():
    table: list[list[list[bytes]]]
    good: list[set[int]]
    wlen: list[int]
    def __init__(self, file_name):
        self.idx2token = {}
        sorted = [] # must be already sorted
        lines = open(file_name, "r", encoding="utf-8").readlines()
        for l in lines:
            idx = int(l[:l.index(' ')])
            x = eval(l[l.index(' '):l.rindex(' ')])
            x = x.encode("utf-8") if isinstance(x, str) else x
            assert isinstance(x, bytes)
            assert len(x) == int(l[l.rindex(' '):])
            sorted += [x]
            self.idx2token[idx] = x

        self.token2idx = {}
        for k, v in self.idx2token.items():
            self.token2idx[v] = int(k)

        # precompute some tables for fast matching
        self.table = [[[] for j in range(256)] for i in range(256)]
        self.good = [set() for i in range(256)]
        self.wlen = [0 for i in range(256)]

        for i in reversed(range(len(sorted))): # reverse order - match longer tokens first
            s = sorted[i]
            if len(s) >= 2:
                s0 = int(s[0])
                s1 = int(s[1])
                self.table[s0][s1] += [s]
                self.wlen[s0] = max(self.wlen[s0], len(s))
                self.good[s0].add(s1)

    def encodeBytes(self, src: bytes) -> list[int]:
        src_len: int = len(src)
        tokens: list[int] = []
        i: int = 0
        while i < src_len:
            s: bytes = src[i : i + 1]

            if i < src_len - 1:
                s1: int = int(src[i + 1])
                s0: int = int(src[i])
                if s1 in self.good[s0]:
                    sss: bytes = src[i : i + self.wlen[s0]]
                    try:
                        s = next(filter(sss.startswith, self.table[s0][s1]))
                    except:
                        pass
            tokens.append(self.token2idx[s])
            i += len(s)

        return tokens

    def decodeBytes(self, tokens):
        return b''.join(map(lambda i: self.idx2token[i], tokens))

    def encode(self, src: str):
        return self.encodeBytes(src.encode("utf-8"))

    def decode(self, tokens):
        return self.decodeBytes(tokens).decode('utf-8')

    def printTokens(self, tokens):
        for i in tokens:
            s = self.idx2token[i]
            try:
                s = s.decode('utf-8')
            except:
                pass
            print(f'{repr(s)}{i}', end=' ')
            # print(repr(s), i)
        print()

########################################################################################################

def sample_logits(out, temperature=1.0, top_p=0.8):
    probs = F.softmax(out, dim=-1).numpy()
    sorted_probs = np.sort(probs)[::-1]
    cumulative_probs = np.cumsum(sorted_probs)
    cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
    probs[probs < cutoff] = 0
    if temperature != 1.0:
        probs = probs**(1.0 / temperature)
    probs = probs / np.sum(probs)
    out = np.random.choice(a=len(probs), p=probs)
    return out

########################################################################################################

tokenizer = RWKV_TOKENIZER("rwkv_vocab_v20230424.txt")

args = types.SimpleNamespace()

args.MODEL_NAME = 'OnlySportsLM'


args.n_layer = 20
args.n_embd =640
args.vocab_size = 65536

context ="""Kobe Bryant"""

NUM_TRIALS = 1
LENGTH_PER_TRIAL = 120
TEMPERATURE = 0.5
TOP_P = 0.7

class RWKV_RNN(MyModule):
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.eval() # set torch to inference mode
        
        w = torch.load(args.MODEL_NAME + '.pth', map_location='cpu')

        for k in w.keys():
            w[k] = w[k].float() # convert to f32 type
            if      '.time_' in k: w[k] = w[k].squeeze()
            if '.time_faaaa' in k: w[k] = w[k].unsqueeze(-1)

        self.n_head = w['blocks.0.att.time_faaaa'].shape[0]
        self.head_size = w['blocks.0.ln1.weight'].shape[0] // self.n_head
        
        self.w = types.SimpleNamespace() # set self.w from w
        self.w.blocks = {}
        for k in w.keys(): # example: "blocks.0.att.time_first" => self.w.blocks[0].att.time_first
            parts = k.split('.')
            last = parts.pop()
            here = self.w
            for p in parts:
                if p.isdigit():
                    p = int(p)
                    if p not in here: here[p] = types.SimpleNamespace()
                    here = here[p]
                else:
                    if not hasattr(here, p): setattr(here, p, types.SimpleNamespace())
                    here = getattr(here, p)
            setattr(here, last, w[k])

    def layer_norm(self, x, w):
        return F.layer_norm(x, (self.args.n_embd,), weight=w.weight, bias=w.bias)

    @MyFunction
    def channel_mixing(self, x, state, i:int, time_maa_k, time_maa_r, kw, vw, rw):
        i0 = (2+self.head_size)*i+0
        sx = state[i0] - x
        xk = x + sx * time_maa_k
        xr = x + sx * time_maa_r
        state[i0] = x
        r = torch.sigmoid(rw @ xr)
        k = torch.square(torch.relu(kw @ xk)) # square relu, primer paper
        return r * (vw @ k)

    @MyFunction
    def time_mixing(self, x, state, i:int, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, time_first, time_decay, kw, vw, rw, gw, ow, ln_w, ln_b):
        H = self.n_head
        S = self.head_size

        i1 = (2+S)*i+1
        sx = state[i1] - x
        state[i1] = x
        xxx = x + sx * x_maa
        xxx = torch.tanh(xxx @ tm_w1).view(5, 1, -1)
        xxx = torch.bmm(xxx, tm_w2).view(5, -1)
        mw, mk, mv, mr, mg = xxx.unbind(dim=0)

        xw = x + sx * (w_maa + mw)
        xk = x + sx * (k_maa + mk)
        xv = x + sx * (v_maa + mv)
        xr = x + sx * (r_maa + mr)
        xg = x + sx * (g_maa + mg)

        w = (time_decay + (torch.tanh(xw @ td_w1) @ td_w2).float()).view(H, S, 1)
        w = torch.exp(-torch.exp(w.float()))

        r = (rw @ xr).view(H, 1, S)
        k = (kw @ xk).view(H, S, 1)
        v = (vw @ xv).view(H, 1, S)
        g = F.silu(gw @ xg)

        s = state[(2+S)*i+2:(2+S)*(i+1), :].reshape(H, S, S)

        x = torch.zeros(H, S)
        a = k @ v
        x = r @ (time_first * a + s)
        s = a + w * s
    
        state[(2+S)*i+2:(2+S)*(i+1), :] = s.reshape(S, -1)
        x = x.flatten()

        x = F.group_norm(x.unsqueeze(0), num_groups=H, weight=ln_w, bias=ln_b, eps = 64e-5).squeeze(0) * g # same as gn(x/8, eps=1e-5)
        return ow @ x

    def forward(self, token, state):
        with torch.no_grad():
            if state == None:
                state = torch.zeros(self.args.n_layer * (2+self.head_size), self.args.n_embd)
            
            x = self.w.emb.weight[token]
            x = self.layer_norm(x, self.w.blocks[0].ln0)
            for i in range(self.args.n_layer):
                att = self.w.blocks[i].att
                x = x + self.time_mixing(self.layer_norm(x, self.w.blocks[i].ln1), state, i,
                    att.time_maa_x, att.time_maa_w, att.time_maa_k, att.time_maa_v, att.time_maa_r, att.time_maa_g, att.time_maa_w1, att.time_maa_w2,
                    att.time_decay_w1, att.time_decay_w2, att.time_faaaa, att.time_decay,
                    att.key.weight, att.value.weight, att.receptance.weight, att.gate.weight, att.output.weight,
                    att.ln_x.weight, att.ln_x.bias)
                ffn = self.w.blocks[i].ffn
                x = x + self.channel_mixing(self.layer_norm(x, self.w.blocks[i].ln2), state, i, 
                    ffn.time_maa_k, ffn.time_maa_r, 
                    ffn.key.weight, ffn.value.weight, ffn.receptance.weight)
            
            x = self.w.head.weight @ self.layer_norm(x, self.w.ln_out)
            return x.float(), state

print(f'\nUsing CPU. Loading {args.MODEL_NAME} ...')
model = RWKV_RNN(args)

#print(f'\nPreprocessing context (slow version. see v2/rwkv/model.py for fast version)')
init_state = None
for token in tokenizer.encode(context):
    init_out, init_state = model.forward(token, init_state)

for TRIAL in range(NUM_TRIALS):
    print(f'\n\n--[ Trial {TRIAL} ]-----------------', context, end="")
    all_tokens = []
    out_last = 0
    out_str = ''

    out, state = init_out.clone(), init_state.clone()
    for i in range(LENGTH_PER_TRIAL):
        token = sample_logits(out, TEMPERATURE, TOP_P)
        all_tokens += [token]
        try:
            tmp = tokenizer.decode(all_tokens[out_last:])
            if '\ufffd' not in tmp: # only print when we have a valid utf-8 string
                #ans.append(tmp)
                print(tmp, end="", flush=True)
                #print(tmp, end="", flush=True)
                #print(tmp)
                out_last = i + 1
            if '\ufffd' not in tmp: # is valid utf-8 string?
                out_str += tmp
                out_last = i + 1
        except:
            pass
        out, state = model.forward(token, state) 
    
   
print('\n')