# Coda-Robotics/OpenVLA-ER-Select-Book-LoRA ## Model Description This is a LoRA adapter weights only (requires base OpenVLA model) of OpenVLA, fine-tuned on the select_book dataset. ## Training Details - **Dataset:** select_book - **Number of Episodes:** 479 - **Batch Size:** 8 - **Training Steps:** 20000 - **Learning Rate:** 2e-5 - **LoRA Configuration:** - Rank: 32 - Dropout: 0.0 - Target Modules: all-linear ## Usage ```python from transformers import AutoProcessor, AutoModelForVision2Seq # Load the model and processor processor = AutoProcessor.from_pretrained("Coda-Robotics/OpenVLA-ER-Select-Book-LoRA") model = AutoModelForVision2Seq.from_pretrained("Coda-Robotics/OpenVLA-ER-Select-Book-LoRA") # Process an image image = ... # Load your image inputs = processor(images=image, return_tensors="pt") outputs = model.generate(**inputs) text = processor.decode(outputs[0], skip_special_tokens=True) ``` ## Using with PEFT To use this adapter with the base OpenVLA model: ```python from transformers import AutoProcessor, AutoModelForVision2Seq from peft import PeftModel, PeftConfig # Load the base model base_model = AutoModelForVision2Seq.from_pretrained("openvla/openvla-7b") # Load the LoRA adapter adapter_model = PeftModel.from_pretrained(base_model, "{model_name}") # Merge weights for faster inference (optional) merged_model = adapter_model.merge_and_unload() ```