Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,119 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- CodeGoat24/HPD
|
5 |
+
- CodeGoat24/OIP
|
6 |
+
- CodeGoat24/EvalMuse
|
7 |
+
- CodeGoat24/ShareGPTVideo-DPO
|
8 |
+
- CodeGoat24/LLaVA-Critic-113k
|
9 |
+
- CodeGoat24/VideoDPO
|
10 |
+
- CodeGoat24/Text-2-Video-Human-Preferences
|
11 |
+
- CodeGoat24/OpenAI-4o_t2i_human_preference
|
12 |
+
- CodeGoat24/ImageGen_Reward_Cold_Start
|
13 |
+
base_model:
|
14 |
+
- CodeGoat24/UnifiedReward-qwen-7b
|
15 |
---
|
16 |
|
17 |
+
## Model Summary
|
18 |
+
|
19 |
+
`Unified-Reward-Think-qwen-7b` is the first unified multimodal CoT reward model, capable of multi-dimensional, step-by-step long-chain reasoning for both visual understanding and generation reward tasks.
|
20 |
+
|
21 |
+
For further details, please refer to the following resources:
|
22 |
+
- 📰 Paper: https://arxiv.org/pdf/2505.03318
|
23 |
+
- 🪐 Project Page: https://codegoat24.github.io/UnifiedReward/think
|
24 |
+
- 🤗 Model Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-models-67c3008148c3a380d15ac63a
|
25 |
+
- 🤗 Dataset Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-training-data-67c300d4fd5eff00fa7f1ede
|
26 |
+
- 👋 Point of Contact: [Yibin Wang](https://codegoat24.github.io)
|
27 |
+
|
28 |
+
### Quick Start
|
29 |
+
All inference codes are provided in our [github](https://github.com/CodeGoat24/UnifiedReward/tree/main/UnifiedReward-Think).
|
30 |
+
|
31 |
+
We take image understanding assessment as example here:
|
32 |
+
~~~python
|
33 |
+
import json
|
34 |
+
import random
|
35 |
+
import torch
|
36 |
+
import tqdm
|
37 |
+
from PIL import Image
|
38 |
+
import warnings
|
39 |
+
import os
|
40 |
+
from transformers import AutoProcessor, AutoTokenizer, Qwen2_5_VLForConditionalGeneration
|
41 |
+
from qwen_vl_utils import process_vision_info
|
42 |
+
|
43 |
+
warnings.filterwarnings("ignore")
|
44 |
+
|
45 |
+
model_path = "CodeGoat24/UnifiedReward-Think-qwen-7b"
|
46 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
47 |
+
model_path, torch_dtype="auto", device_map="auto"
|
48 |
+
)
|
49 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
50 |
+
|
51 |
+
|
52 |
+
url = "https://github.com/LLaVA-VL/blog/blob/main/2024-10-03-llava-critic/static/images/critic_img_seven.png?raw=True"
|
53 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
54 |
+
|
55 |
+
prompt_text = ("Given a question and a reference image, please analyze in detail the two provided answers (Answer 1 and Answer 2). " \
|
56 |
+
"Evaluate them based on the following three core dimensions:\n" \
|
57 |
+
"1. Semantic accuracy: How well the answer reflects the visual content of the image\n" \
|
58 |
+
"2. Correctness: Whether the answer is logically and factually correct\n" \
|
59 |
+
"3. Clarity: Whether the answer is clearly and fluently expressed\n" \
|
60 |
+
"You may also consider additional dimensions if you find them relevant (e.g., reasoning ability, attention to detail, multimodal grounding, etc.). " \
|
61 |
+
"For each dimension, provide a score from 1 to 10 for both answers, and briefly explain your reasoning. " \
|
62 |
+
"Then, compute the total score for each answer by explicitly adding the scores for all dimensions and showing the full calculation. " \
|
63 |
+
"Enclose your full reasoning within <think> and </think> tags. " \
|
64 |
+
"Then, in the <answer> tag, output exactly one of the following: 'Answer 1 is better' or 'Answer 2 is better'. No other text is allowed in the <answer> section.\n\n" \
|
65 |
+
"Example format:\n" \
|
66 |
+
"<think>\n" \
|
67 |
+
"1. Semantic accuracy: Answer 1 (9/10) - ...; Answer 2 (7/10) - ...\n" \
|
68 |
+
"2. Correctness: Answer 1 (8/10) - ...; Answer 2 (7/10) - ...\n" \
|
69 |
+
"3. Clarity: Answer 1 (9/10) - ...; Answer 2 (8/10) - ...\n" \
|
70 |
+
"[Additional dimensions if any]: Answer 1 (6/10) - ...; Answer 2 (7/10) - ...\n" \
|
71 |
+
"Total score:\nAnswer 1: 9+8+9+6=32\nAnswer 2: 7+7+8+7=29\n" \
|
72 |
+
"</think>\n" \
|
73 |
+
"<answer>Answer 1 is better</answer>\n\n" \
|
74 |
+
"**Note: In the example above, scores and the final answer are placeholders meant only to demonstrate the format. Your actual evaluation should be based on the quality of two given answers.**\n\n"
|
75 |
+
f"Your task is provided as follows:\nQuestion: [{Query}]\nAnswer 1: [{R1}]\nAnswer 2: [{R2}]")
|
76 |
+
|
77 |
+
messages = [
|
78 |
+
{
|
79 |
+
"role": "user",
|
80 |
+
"content": [
|
81 |
+
{"type": "image", "image": image},
|
82 |
+
{"type": "text", "text": prompt_text},
|
83 |
+
],
|
84 |
+
}
|
85 |
+
]
|
86 |
+
|
87 |
+
chat_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
88 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
89 |
+
|
90 |
+
inputs = processor(
|
91 |
+
text=[chat_input],
|
92 |
+
images=image_inputs,
|
93 |
+
videos=video_inputs,
|
94 |
+
return_tensors="pt",
|
95 |
+
padding=True
|
96 |
+
).to("cuda")
|
97 |
+
|
98 |
+
with torch.no_grad():
|
99 |
+
generated_ids = model.generate(**inputs, max_new_tokens=4096)
|
100 |
+
generated_trimmed = [
|
101 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
102 |
+
]
|
103 |
+
output = processor.batch_decode(generated_trimmed, skip_special_tokens=True)[0]
|
104 |
+
|
105 |
+
print(output)
|
106 |
+
|
107 |
+
~~~
|
108 |
+
|
109 |
+
|
110 |
+
## Citation
|
111 |
+
|
112 |
+
```
|
113 |
+
@article{UnifiedReward-Think,
|
114 |
+
title={Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning.},
|
115 |
+
author={Wang, Yibin and Li, Zhimin and Zang, Yuhang and Wang, Chunyu and Lu, Qinglin, and Jin, Cheng and Wang, Jiaqi},
|
116 |
+
journal={arXiv preprint arXiv:2505.03318},
|
117 |
+
year={2025}
|
118 |
+
}
|
119 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|