CodeGoat24 commited on
Commit
47a6e97
Β·
verified Β·
1 Parent(s): 9eb87ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -3
README.md CHANGED
@@ -1,3 +1,119 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - CodeGoat24/HPD
5
+ - CodeGoat24/LiFT-HRA
6
+ - CodeGoat24/OIP
7
+ - CodeGoat24/EvalMuse
8
+ - CodeGoat24/ShareGPTVideo-DPO
9
+ - CodeGoat24/VideoFeedback
10
+ - CodeGoat24/LLaVA-Critic-113k
11
+ - CodeGoat24/VideoDPO
12
+ base_model:
13
+ - Qwen/Qwen2.5-VL-7B-Instruct
14
+ ---
15
+
16
+
17
+ # UnifiedReward-qwen-7B
18
+ We are actively gathering feedback from the community to improve our models. **We welcome your input and encourage you to stay updated through our repository**!!
19
+
20
+ ## Model Summary
21
+
22
+ `UnifiedReward-qwen-7b` is the first unified reward model based on [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) for multimodal understanding and generation assessment, enabling both pairwise ranking and pointwise scoring, which can be employed for vision model preference alignment.
23
+
24
+ For further details, please refer to the following resources:
25
+ - πŸ“° Paper: https://arxiv.org/pdf/2503.05236
26
+ - πŸͺ Project Page: https://codegoat24.github.io/UnifiedReward/
27
+ - πŸ€— Model Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-models-67c3008148c3a380d15ac63a
28
+ - πŸ€— Dataset Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-training-data-67c300d4fd5eff00fa7f1ede
29
+ - πŸ‘‹ Point of Contact: [Yibin Wang](https://codegoat24.github.io)
30
+
31
+
32
+ ## 🏁 Compared with Current Reward Models
33
+
34
+ | Reward Model | Method| Image Generation | Image Understanding | Video Generation | Video Understanding
35
+ | :-----: | :-----: |:-----: |:-----: | :-----: | :-----: |
36
+ | [PickScore](https://github.com/yuvalkirstain/PickScore) |Point | √ | | ||
37
+ | [HPS](https://github.com/tgxs002/HPSv2) | Point | √ | |||
38
+ | [ImageReward](https://github.com/THUDM/ImageReward) | Point| √| |||
39
+ | [LLaVA-Critic](https://huggingface.co/lmms-lab/llava-critic-7b) | Pair/Point | | √ |||
40
+ | [IXC-2.5-Reward](https://github.com/InternLM/InternLM-XComposer) | Pair/Point | | √ ||√|
41
+ | [VideoScore](https://github.com/TIGER-AI-Lab/VideoScore) | Point | | |√ ||
42
+ | [LiFT](https://github.com/CodeGoat24/LiFT) | Point | | |√| |
43
+ | [VisionReward](https://github.com/THUDM/VisionReward) | Point |√ | |√||
44
+ | [VideoReward](https://github.com/KwaiVGI/VideoAlign) | Point | | |√ ||
45
+ | UnifiedReward (Ours) | Pair/Point | √ | √ |√|√|
46
+
47
+
48
+ ### Quick Start
49
+ All pair rank and point score inference codes are provided in our [github](https://github.com/CodeGoat24/UnifiedReward).
50
+
51
+ We take image understanding assessment as example here:
52
+ ~~~python
53
+ import json
54
+ import random
55
+ import torch
56
+ import tqdm
57
+ from PIL import Image
58
+ import warnings
59
+ import os
60
+ from transformers import AutoProcessor, AutoTokenizer, Qwen2_5_VLForConditionalGeneration
61
+ from qwen_vl_utils import process_vision_info
62
+
63
+ warnings.filterwarnings("ignore")
64
+
65
+ model_path = "CodeGoat24/UnifiedReward-qwen-7b"
66
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
67
+ model_path, torch_dtype="auto", device_map="auto"
68
+ )
69
+ processor = AutoProcessor.from_pretrained(model_path)
70
+
71
+
72
+ url = "https://github.com/LLaVA-VL/blog/blob/main/2024-10-03-llava-critic/static/images/critic_img_seven.png?raw=True"
73
+ image = Image.open(requests.get(url, stream=True).raw)
74
+
75
+ prompt_text = f'Given an image and a corresponding question, please serve as an unbiased and fair judge to evaluate the quality of the answers provided by a Large Multimodal Model (LMM). Determine which answer is better and explain your reasoning with specific details. Your task is provided as follows:\nQuestion: [What this image presents?]\nThe first response: [The image is a black and white sketch of a line that appears to be in the shape of a cross. The line is a simple and straightforward representation of the cross shape, with two straight lines intersecting at a point.]\nThe second response: [This is a handwritten number seven.]\nASSISTANT:\n'
76
+
77
+ messages = [
78
+ {
79
+ "role": "user",
80
+ "content": [
81
+ {"type": "image", "image": image},
82
+ {"type": "text", "text": prompt_text},
83
+ ],
84
+ }
85
+ ]
86
+
87
+ chat_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
88
+ image_inputs, video_inputs = process_vision_info(messages)
89
+
90
+ inputs = processor(
91
+ text=[chat_input],
92
+ images=image_inputs,
93
+ videos=video_inputs,
94
+ return_tensors="pt",
95
+ padding=True
96
+ ).to("cuda")
97
+
98
+ with torch.no_grad():
99
+ generated_ids = model.generate(**inputs, max_new_tokens=4096)
100
+ generated_trimmed = [
101
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
102
+ ]
103
+ output = processor.batch_decode(generated_trimmed, skip_special_tokens=True)[0]
104
+
105
+
106
+ print(output)
107
+ ~~~
108
+
109
+
110
+ ## Citation
111
+
112
+ ```
113
+ @article{UnifiedReward,
114
+ title={Unified Reward Model for Multimodal Understanding and Generation.},
115
+ author={Wang, Yibin and Zang, Yuhang, and Li, Hao and Jin, Cheng and Wang Jiaqi},
116
+ journal={arXiv preprint arXiv:2503.05236},
117
+ year={2025}
118
+ }
119
+ ```