lbourdois commited on
Commit
b4326da
·
verified ·
1 Parent(s): 5aa0343

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +72 -58
README.md CHANGED
@@ -1,59 +1,73 @@
1
- ---
2
- base_model: Qwen/Qwen2.5-3B-Instruct
3
- datasets: CohenQu/InfoSeek.06.00
4
- library_name: transformers
5
- model_name: Qwen2.5-3B-Instruct_InfoSeek.06.00
6
- tags:
7
- - generated_from_trainer
8
- - trl
9
- - sft
10
- licence: license
11
- ---
12
-
13
- # Model Card for Qwen2.5-3B-Instruct_InfoSeek.06.00
14
-
15
- This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [CohenQu/InfoSeek.06.00](https://huggingface.co/datasets/CohenQu/InfoSeek.06.00) dataset.
16
- It has been trained using [TRL](https://github.com/huggingface/trl).
17
-
18
- ## Quick start
19
-
20
- ```python
21
- from transformers import pipeline
22
-
23
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
- generator = pipeline("text-generation", model="CohenQu/Qwen2.5-3B-Instruct_InfoSeek.06.00", device="cuda")
25
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
- print(output["generated_text"])
27
- ```
28
-
29
- ## Training procedure
30
-
31
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yuxiao98/info-seek/runs/mkwhow1z)
32
-
33
-
34
- This model was trained with SFT.
35
-
36
- ### Framework versions
37
-
38
- - TRL: 0.17.0.dev0
39
- - Transformers: 4.50.2
40
- - Pytorch: 2.5.1
41
- - Datasets: 3.5.0
42
- - Tokenizers: 0.21.1
43
-
44
- ## Citations
45
-
46
-
47
-
48
- Cite TRL as:
49
-
50
- ```bibtex
51
- @misc{vonwerra2022trl,
52
- title = {{TRL: Transformer Reinforcement Learning}},
53
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
54
- year = 2020,
55
- journal = {GitHub repository},
56
- publisher = {GitHub},
57
- howpublished = {\url{https://github.com/huggingface/trl}}
58
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ```
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B-Instruct
3
+ datasets: CohenQu/InfoSeek.06.00
4
+ library_name: transformers
5
+ model_name: Qwen2.5-3B-Instruct_InfoSeek.06.00
6
+ tags:
7
+ - generated_from_trainer
8
+ - trl
9
+ - sft
10
+ licence: license
11
+ language:
12
+ - zho
13
+ - eng
14
+ - fra
15
+ - spa
16
+ - por
17
+ - deu
18
+ - ita
19
+ - rus
20
+ - jpn
21
+ - kor
22
+ - vie
23
+ - tha
24
+ - ara
25
+ ---
26
+
27
+ # Model Card for Qwen2.5-3B-Instruct_InfoSeek.06.00
28
+
29
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [CohenQu/InfoSeek.06.00](https://huggingface.co/datasets/CohenQu/InfoSeek.06.00) dataset.
30
+ It has been trained using [TRL](https://github.com/huggingface/trl).
31
+
32
+ ## Quick start
33
+
34
+ ```python
35
+ from transformers import pipeline
36
+
37
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
38
+ generator = pipeline("text-generation", model="CohenQu/Qwen2.5-3B-Instruct_InfoSeek.06.00", device="cuda")
39
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
40
+ print(output["generated_text"])
41
+ ```
42
+
43
+ ## Training procedure
44
+
45
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yuxiao98/info-seek/runs/mkwhow1z)
46
+
47
+
48
+ This model was trained with SFT.
49
+
50
+ ### Framework versions
51
+
52
+ - TRL: 0.17.0.dev0
53
+ - Transformers: 4.50.2
54
+ - Pytorch: 2.5.1
55
+ - Datasets: 3.5.0
56
+ - Tokenizers: 0.21.1
57
+
58
+ ## Citations
59
+
60
+
61
+
62
+ Cite TRL as:
63
+
64
+ ```bibtex
65
+ @misc{vonwerra2022trl,
66
+ title = {{TRL: Transformer Reinforcement Learning}},
67
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
68
+ year = 2020,
69
+ journal = {GitHub repository},
70
+ publisher = {GitHub},
71
+ howpublished = {\url{https://github.com/huggingface/trl}}
72
+ }
73
  ```