Update README.md
Browse files
README.md
CHANGED
@@ -147,318 +147,197 @@ metrics:
|
|
147 |
- wer
|
148 |
---
|
149 |
|
150 |
-
#
|
151 |
|
152 |
-
|
153 |
-
img {
|
154 |
-
display: inline;
|
155 |
-
}
|
156 |
-
</style>
|
157 |
|
158 |
-
[
|
159 |
-
| [](#model-architecture)
|
160 |
-
| [](#datasets)
|
161 |
|
|
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
166 |
|
167 |
-
This XL variant of the FastConformer [1] architecture integrates the TDT [2] decoder and is trained with full attention, enabling efficient transcription of audio segments up to 24 minutes in a single pass. The model achieves an RTFx of 3380 on the HF-Open-ASR leaderboard with a batch size of 128. Note: *RTFx Performance may vary depending on dataset audio duration and batch size.*
|
168 |
|
169 |
-
**Key Features**
|
170 |
-
- Accurate word-level timestamp predictions
|
171 |
-
- Automatic punctuation and capitalization
|
172 |
-
- Robust performance on spoken numbers, and song lyrics transcription
|
173 |
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
|
|
|
178 |
|
179 |
-
|
|
|
|
|
180 |
|
181 |
-
|
182 |
|
|
|
183 |
|
184 |
-
###
|
185 |
-
Global
|
186 |
|
|
|
187 |
|
188 |
-
|
189 |
|
190 |
-
|
191 |
|
|
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
200 |
|
201 |
-
|
202 |
|
203 |
-
|
204 |
|
205 |
-
|
206 |
-
* This model has 600 million model parameters.
|
207 |
|
208 |
-
###
|
209 |
-
- **Input Type(s):** 16kHz Audio
|
210 |
-
- **Input Format(s):** `.wav` and `.flac` audio formats
|
211 |
-
- **Input Parameters:** 1D (audio signal)
|
212 |
-
- **Other Properties Related to Input:** Monochannel audio
|
213 |
|
214 |
-
|
215 |
-
- **Output Type(s):** Text
|
216 |
-
- **Output Format:** String
|
217 |
-
- **Output Parameters:** 1D (text)
|
218 |
-
- **Other Properties Related to Output:** Punctuations and Capitalizations included.
|
219 |
|
220 |
-
|
221 |
|
222 |
-
##
|
223 |
|
224 |
-
|
225 |
-
```bash
|
226 |
-
pip install -U nemo_toolkit['asr']
|
227 |
-
```
|
228 |
-
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
229 |
|
230 |
-
|
231 |
|
232 |
-
|
233 |
-
import nemo.collections.asr as nemo_asr
|
234 |
-
asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name="nvidia/parakeet-tdt-0.6b-v2")
|
235 |
-
```
|
236 |
|
237 |
-
|
238 |
-
First, let's get a sample
|
239 |
-
```bash
|
240 |
-
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
|
241 |
-
```
|
242 |
-
Then simply do:
|
243 |
-
```python
|
244 |
-
output = asr_model.transcribe(['2086-149220-0033.wav'])
|
245 |
-
print(output[0].text)
|
246 |
-
```
|
247 |
|
248 |
-
|
249 |
|
250 |
-
|
251 |
-
```python
|
252 |
-
output = asr_model.transcribe(['2086-149220-0033.wav'], timestamps=True)
|
253 |
-
# by default, timestamps are enabled for char, word and segment level
|
254 |
-
word_timestamps = output[0].timestamp['word'] # word level timestamps for first sample
|
255 |
-
segment_timestamps = output[0].timestamp['segment'] # segment level timestamps
|
256 |
-
char_timestamps = output[0].timestamp['char'] # char level timestamps
|
257 |
|
258 |
-
|
259 |
-
print(f"{stamp['start']}s - {stamp['end']}s : {stamp['segment']}")
|
260 |
-
```
|
261 |
|
|
|
262 |
|
263 |
-
|
264 |
|
265 |
-
|
266 |
-
* NeMo 2.2
|
267 |
|
268 |
|
269 |
-
|
270 |
-
* NVIDIA Ampere
|
271 |
-
* NVIDIA Blackwell
|
272 |
-
* NVIDIA Hopper
|
273 |
-
* NVIDIA Volta
|
274 |
|
275 |
-
**[
|
276 |
|
277 |
-
|
278 |
|
279 |
-
|
280 |
|
281 |
-
|
282 |
|
283 |
-
|
284 |
|
285 |
-
|
286 |
|
287 |
-
|
288 |
|
289 |
-
|
290 |
|
291 |
-
This
|
292 |
|
293 |
-
|
294 |
-
- Trained for 150,000 steps on 128 A100 GPUs.
|
295 |
-
- Dataset corpora were balanced using a temperature sampling value of 0.5.
|
296 |
-
- Stage 2 fine-tuning was performed for 2,500 steps on 4 A100 GPUs using approximately 500 hours of high-quality, human-transcribed data of NeMo ASR Set 3.0.
|
297 |
|
298 |
-
|
299 |
|
300 |
-
|
301 |
|
302 |
-
|
303 |
-
The model was trained on the Granary dataset, consisting of approximately 120,000 hours of English speech data:
|
304 |
|
305 |
-
|
306 |
-
- LibriSpeech (960 hours)
|
307 |
-
- Fisher Corpus
|
308 |
-
- National Speech Corpus Part 1
|
309 |
-
- VCTK
|
310 |
-
- VoxPopuli (English)
|
311 |
-
- Europarl-ASR (English)
|
312 |
-
- Multilingual LibriSpeech (MLS English) – 2,000-hour subset
|
313 |
-
- Mozilla Common Voice (v7.0)
|
314 |
-
- AMI
|
315 |
|
316 |
-
|
317 |
-
- YTC (YouTube-Commons) dataset[4]
|
318 |
-
- YODAS dataset [5]
|
319 |
-
- Librilight [7]
|
320 |
|
321 |
-
|
322 |
|
323 |
-
|
324 |
|
325 |
-
|
326 |
|
327 |
-
|
328 |
|
329 |
-
* Hybrid: Synthetic, Human
|
330 |
|
331 |
-
**Properties:**
|
332 |
|
333 |
-
|
334 |
-
* Single channel, 16kHz sampled data
|
335 |
|
336 |
-
|
337 |
|
338 |
-
|
339 |
|
340 |
-
|
341 |
-
* Human
|
342 |
|
343 |
-
|
344 |
-
* Human
|
345 |
|
346 |
-
|
347 |
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
350 |
|
351 |
-
##
|
352 |
|
353 |
-
|
354 |
-
The performance of Automatic Speech Recognition (ASR) models is measured using Word Error Rate (WER). Given that this model is trained on a large and diverse dataset spanning multiple domains, it is generally more robust and accurate across various types of audio.
|
355 |
|
356 |
-
|
357 |
-
The table below summarizes the WER (%) using a Transducer decoder with greedy decoding (without an external language model):
|
358 |
|
359 |
-
|
360 |
-
|:-------------|:-------------:|:---------:|:------------------:|:----------------:|:-----------------:|:-----------------:|:------------------:|:----------------:|:---------------:|
|
361 |
-
| parakeet-tdt-0.6b-v2 | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
|
362 |
|
363 |
-
|
364 |
-
Performance across different Signal-to-Noise Ratios (SNR) using MUSAN music and noise samples:
|
365 |
|
366 |
-
|
367 |
-
|:---------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
|
368 |
-
| Clean | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
|
369 |
-
| SNR 50 | 6.04 | 11.11 | 11.12 | 9.74 | 1.70 | 3.18 | 2.18 | 3.34 | 5.98 | +0.25% |
|
370 |
-
| SNR 25 | 6.50 | 12.76 | 11.50 | 9.98 | 1.78 | 3.63 | 2.54 | 3.46 | 6.34 | -7.04% |
|
371 |
-
| SNR 5 | 8.39 | 19.33 | 13.83 | 11.28 | 2.36 | 5.50 | 3.91 | 3.91 | 6.96 | -38.11% |
|
372 |
|
373 |
-
|
374 |
-
Performance comparison between standard 16kHz audio and telephony-style audio (using μ-law encoding with 16kHz→8kHz→16kHz conversion):
|
375 |
|
376 |
-
|
377 |
-
|:-----------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
|
378 |
-
| Standard 16kHz | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
|
379 |
-
| μ-law 8kHz | 6.32 | 11.98 | 11.16 | 10.02 | 1.78 | 3.52 | 2.20 | 3.38 | 6.52 | -4.10% |
|
380 |
|
381 |
-
|
382 |
|
|
|
383 |
|
|
|
384 |
|
385 |
-
|
386 |
|
387 |
-
[
|
388 |
|
389 |
-
|
390 |
|
391 |
-
[
|
392 |
|
393 |
-
|
394 |
|
395 |
-
|
396 |
|
397 |
-
[
|
398 |
|
399 |
-
|
400 |
|
401 |
-
|
402 |
|
403 |
-
|
404 |
-
* NVIDIA NeMo
|
405 |
|
406 |
-
|
407 |
-
* NVIDIA A10
|
408 |
-
* NVIDIA A100
|
409 |
-
* NVIDIA A30
|
410 |
-
* NVIDIA H100
|
411 |
-
* NVIDIA L4
|
412 |
-
* NVIDIA L40
|
413 |
-
* NVIDIA Turing T4
|
414 |
-
* NVIDIA Volta V100
|
415 |
|
416 |
-
##
|
417 |
-
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their supporting model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
|
422 |
-
|
423 |
-
## <span style="color:#466f00;">Bias:</span>
|
424 |
-
|
425 |
-
Field | Response
|
426 |
-
---------------------------------------------------------------------------------------------------|---------------
|
427 |
-
Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing | None
|
428 |
-
Measures taken to mitigate against unwanted bias | None
|
429 |
-
|
430 |
-
## <span style="color:#466f00;">Explainability:</span>
|
431 |
-
|
432 |
-
Field | Response
|
433 |
-
------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------
|
434 |
-
Intended Domain | Speech to Text Transcription
|
435 |
-
Model Type | FastConformer
|
436 |
-
Intended Users | This model is intended for developers, researchers, academics, and industries building conversational based applications.
|
437 |
-
Output | Text
|
438 |
-
Describe how the model works | Speech input is encoded into embeddings and passed into conformer-based model and output a text response.
|
439 |
-
Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of | Not Applicable
|
440 |
-
Technical Limitations & Mitigation | Transcripts may be not 100% accurate. Accuracy varies based on language and characteristics of input audio (Domain, Use Case, Accent, Noise, Speech Type, Context of speech, etc.)
|
441 |
-
Verified to have met prescribed NVIDIA quality standards | Yes
|
442 |
-
Performance Metrics | Word Error Rate
|
443 |
-
Potential Known Risks | If a word is not trained in the language model and not presented in vocabulary, the word is not likely to be recognized. Not recommended for word-for-word/incomplete sentences as accuracy varies based on the context of input text
|
444 |
-
Licensing | GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.
|
445 |
-
|
446 |
-
## <span style="color:#466f00;">Privacy:</span>
|
447 |
-
|
448 |
-
Field | Response
|
449 |
-
----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------
|
450 |
-
Generatable or reverse engineerable personal data? | None
|
451 |
-
Personal data used to create this model? | None
|
452 |
-
Is there provenance for all datasets used in training? | Yes
|
453 |
-
Does data labeling (annotation, metadata) comply with privacy laws? | Yes
|
454 |
-
Is data compliant with data subject requests for data correction or removal, if such a request was made? | No, not possible with externally-sourced data.
|
455 |
-
Applicable Privacy Policy | https://www.nvidia.com/en-us/about-nvidia/privacy-policy/
|
456 |
-
|
457 |
-
## <span style="color:#466f00;">Safety:</span>
|
458 |
-
|
459 |
-
Field | Response
|
460 |
-
---------------------------------------------------|----------------------------------
|
461 |
-
Model Application(s) | Speech to Text Transcription
|
462 |
-
Describe the life critical impact | None
|
463 |
-
Use Case Restrictions | Abide by [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) License
|
464 |
-
Model and dataset restrictions | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to.
|
|
|
147 |
- wer
|
148 |
---
|
149 |
|
150 |
+
# Model Card for Model ID
|
151 |
|
152 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
|
|
|
|
155 |
|
156 |
+
## Model Details
|
157 |
|
158 |
+
### Model Description
|
159 |
|
160 |
+
<!-- Provide a longer summary of what this model is. -->
|
161 |
|
|
|
162 |
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
- **Developed by:** [More Information Needed]
|
165 |
+
- **Funded by [optional]:** [More Information Needed]
|
166 |
+
- **Shared by [optional]:** [More Information Needed]
|
167 |
+
- **Model type:** [More Information Needed]
|
168 |
+
- **Language(s) (NLP):** [More Information Needed]
|
169 |
+
- **License:** [More Information Needed]
|
170 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
171 |
|
172 |
+
### Model Sources [optional]
|
173 |
|
174 |
+
<!-- Provide the basic links for the model. -->
|
175 |
|
176 |
+
- **Repository:** [More Information Needed]
|
177 |
+
- **Paper [optional]:** [More Information Needed]
|
178 |
+
- **Demo [optional]:** [More Information Needed]
|
179 |
|
180 |
+
## Uses
|
181 |
|
182 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
183 |
|
184 |
+
### Direct Use
|
|
|
185 |
|
186 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
187 |
|
188 |
+
[More Information Needed]
|
189 |
|
190 |
+
### Downstream Use [optional]
|
191 |
|
192 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
193 |
|
194 |
+
[More Information Needed]
|
195 |
|
196 |
+
### Out-of-Scope Use
|
197 |
|
198 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
199 |
|
200 |
+
[More Information Needed]
|
201 |
|
202 |
+
## Bias, Risks, and Limitations
|
203 |
|
204 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
205 |
|
206 |
+
[More Information Needed]
|
|
|
207 |
|
208 |
+
### Recommendations
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
|
|
|
|
|
|
|
|
211 |
|
212 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
213 |
|
214 |
+
## How to Get Started with the Model
|
215 |
|
216 |
+
Use the code below to get started with the model.
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
[More Information Needed]
|
219 |
|
220 |
+
## Training Details
|
|
|
|
|
|
|
221 |
|
222 |
+
### Training Data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
225 |
|
226 |
+
[More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
### Training Procedure
|
|
|
|
|
229 |
|
230 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
231 |
|
232 |
+
#### Preprocessing [optional]
|
233 |
|
234 |
+
[More Information Needed]
|
|
|
235 |
|
236 |
|
237 |
+
#### Training Hyperparameters
|
|
|
|
|
|
|
|
|
238 |
|
239 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
240 |
|
241 |
+
#### Speeds, Sizes, Times [optional]
|
242 |
|
243 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
244 |
|
245 |
+
[More Information Needed]
|
246 |
|
247 |
+
## Evaluation
|
248 |
|
249 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
250 |
|
251 |
+
### Testing Data, Factors & Metrics
|
252 |
|
253 |
+
#### Testing Data
|
254 |
|
255 |
+
<!-- This should link to a Dataset Card if possible. -->
|
256 |
|
257 |
+
[More Information Needed]
|
|
|
|
|
|
|
258 |
|
259 |
+
#### Factors
|
260 |
|
261 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
262 |
|
263 |
+
[More Information Needed]
|
|
|
264 |
|
265 |
+
#### Metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
|
|
|
|
|
|
268 |
|
269 |
+
[More Information Needed]
|
270 |
|
271 |
+
### Results
|
272 |
|
273 |
+
[More Information Needed]
|
274 |
|
275 |
+
#### Summary
|
276 |
|
|
|
277 |
|
|
|
278 |
|
279 |
+
## Model Examination [optional]
|
|
|
280 |
|
281 |
+
<!-- Relevant interpretability work for the model goes here -->
|
282 |
|
283 |
+
[More Information Needed]
|
284 |
|
285 |
+
## Environmental Impact
|
|
|
286 |
|
287 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
|
|
288 |
|
289 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
290 |
|
291 |
+
- **Hardware Type:** [More Information Needed]
|
292 |
+
- **Hours used:** [More Information Needed]
|
293 |
+
- **Cloud Provider:** [More Information Needed]
|
294 |
+
- **Compute Region:** [More Information Needed]
|
295 |
+
- **Carbon Emitted:** [More Information Needed]
|
296 |
|
297 |
+
## Technical Specifications [optional]
|
298 |
|
299 |
+
### Model Architecture and Objective
|
|
|
300 |
|
301 |
+
[More Information Needed]
|
|
|
302 |
|
303 |
+
### Compute Infrastructure
|
|
|
|
|
304 |
|
305 |
+
[More Information Needed]
|
|
|
306 |
|
307 |
+
#### Hardware
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
+
[More Information Needed]
|
|
|
310 |
|
311 |
+
#### Software
|
|
|
|
|
|
|
312 |
|
313 |
+
[More Information Needed]
|
314 |
|
315 |
+
## Citation [optional]
|
316 |
|
317 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
318 |
|
319 |
+
**BibTeX:**
|
320 |
|
321 |
+
[More Information Needed]
|
322 |
|
323 |
+
**APA:**
|
324 |
|
325 |
+
[More Information Needed]
|
326 |
|
327 |
+
## Glossary [optional]
|
328 |
|
329 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
330 |
|
331 |
+
[More Information Needed]
|
332 |
|
333 |
+
## More Information [optional]
|
334 |
|
335 |
+
[More Information Needed]
|
336 |
|
337 |
+
## Model Card Authors [optional]
|
|
|
338 |
|
339 |
+
[More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
+
## Model Card Contact
|
|
|
342 |
|
343 |
+
[More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|