VisoLearn commited on
Commit
7c6eea0
·
verified ·
1 Parent(s): 3884723

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -222
README.md CHANGED
@@ -147,318 +147,197 @@ metrics:
147
  - wer
148
  ---
149
 
150
- # **Parakeet TDT 0.6B V2 (En)**
151
 
152
- <style>
153
- img {
154
- display: inline;
155
- }
156
- </style>
157
 
158
- [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--TDT-blue#model-badge)](#model-architecture)
159
- | [![Model size](https://img.shields.io/badge/Params-0.6B-green#model-badge)](#model-architecture)
160
- | [![Language](https://img.shields.io/badge/Language-en-orange#model-badge)](#datasets)
161
 
 
162
 
163
- ## <span style="color:#466f00;">Description:</span>
164
 
165
- `parakeet-tdt-0.6b-v2` is a 600-million-parameter automatic speech recognition (ASR) model designed for high-quality English transcription, featuring support for punctuation, capitalization, and accurate timestamp prediction. Try Demo here: https://huggingface.co/spaces/nvidia/parakeet-tdt-0.6b-v2
166
 
167
- This XL variant of the FastConformer [1] architecture integrates the TDT [2] decoder and is trained with full attention, enabling efficient transcription of audio segments up to 24 minutes in a single pass. The model achieves an RTFx of 3380 on the HF-Open-ASR leaderboard with a batch size of 128. Note: *RTFx Performance may vary depending on dataset audio duration and batch size.*
168
 
169
- **Key Features**
170
- - Accurate word-level timestamp predictions
171
- - Automatic punctuation and capitalization
172
- - Robust performance on spoken numbers, and song lyrics transcription
173
 
174
- For more information, refer to the [Model Architecture](#model-architecture) section and the [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
 
 
 
 
 
 
175
 
176
- This model is ready for commercial/non-commercial use.
177
 
 
178
 
179
- ## <span style="color:#466f00;">License/Terms of Use:</span>
 
 
180
 
181
- GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.
182
 
 
183
 
184
- ### <span style="color:#466f00;">Deployment Geography:</span>
185
- Global
186
 
 
187
 
188
- ### <span style="color:#466f00;">Use Case:</span>
189
 
190
- This model serves developers, researchers, academics, and industries building applications that require speech-to-text capabilities, including but not limited to: conversational AI, voice assistants, transcription services, subtitle generation, and voice analytics platforms.
191
 
 
192
 
193
- ### <span style="color:#466f00;">Release Date:</span>
194
 
195
- 05/01/2025
196
 
197
- ### <span style="color:#466f00;">Model Architecture:</span>
198
 
199
- **Architecture Type**:
200
 
201
- FastConformer-TDT
202
 
203
- **Network Architecture**:
204
 
205
- * This model was developed based on [FastConformer encoder](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) architecture[1] and TDT decoder[2]
206
- * This model has 600 million model parameters.
207
 
208
- ### <span style="color:#466f00;">Input:</span>
209
- - **Input Type(s):** 16kHz Audio
210
- - **Input Format(s):** `.wav` and `.flac` audio formats
211
- - **Input Parameters:** 1D (audio signal)
212
- - **Other Properties Related to Input:** Monochannel audio
213
 
214
- ### <span style="color:#466f00;">Output:</span>
215
- - **Output Type(s):** Text
216
- - **Output Format:** String
217
- - **Output Parameters:** 1D (text)
218
- - **Other Properties Related to Output:** Punctuations and Capitalizations included.
219
 
220
- Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA's hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.
221
 
222
- ## <span style="color:#466f00;">How to Use this Model:</span>
223
 
224
- To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
225
- ```bash
226
- pip install -U nemo_toolkit['asr']
227
- ```
228
- The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
229
 
230
- #### Automatically instantiate the model
231
 
232
- ```python
233
- import nemo.collections.asr as nemo_asr
234
- asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name="nvidia/parakeet-tdt-0.6b-v2")
235
- ```
236
 
237
- #### Transcribing using Python
238
- First, let's get a sample
239
- ```bash
240
- wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
241
- ```
242
- Then simply do:
243
- ```python
244
- output = asr_model.transcribe(['2086-149220-0033.wav'])
245
- print(output[0].text)
246
- ```
247
 
248
- #### Transcribing with timestamps
249
 
250
- To transcribe with timestamps:
251
- ```python
252
- output = asr_model.transcribe(['2086-149220-0033.wav'], timestamps=True)
253
- # by default, timestamps are enabled for char, word and segment level
254
- word_timestamps = output[0].timestamp['word'] # word level timestamps for first sample
255
- segment_timestamps = output[0].timestamp['segment'] # segment level timestamps
256
- char_timestamps = output[0].timestamp['char'] # char level timestamps
257
 
258
- for stamp in segment_timestamps:
259
- print(f"{stamp['start']}s - {stamp['end']}s : {stamp['segment']}")
260
- ```
261
 
 
262
 
263
- ## <span style="color:#466f00;">Software Integration:</span>
264
 
265
- **Runtime Engine(s):**
266
- * NeMo 2.2
267
 
268
 
269
- **Supported Hardware Microarchitecture Compatibility:**
270
- * NVIDIA Ampere
271
- * NVIDIA Blackwell
272
- * NVIDIA Hopper
273
- * NVIDIA Volta
274
 
275
- **[Preferred/Supported] Operating System(s):**
276
 
277
- - Linux
278
 
279
- **Hardware Specific Requirements:**
280
 
281
- Atleast 2GB RAM for model to load. The bigger the RAM, the larger audio input it supports.
282
 
283
- #### Model Version
284
 
285
- Current version: parakeet-tdt-0.6b-v2. Previous versions can be [accessed](https://huggingface.co/collections/nvidia/parakeet-659711f49d1469e51546e021) here.
286
 
287
- ## <span style="color:#466f00;">Training and Evaluation Datasets:</span>
288
 
289
- ### <span style="color:#466f00;">Training</span>
290
 
291
- This model was trained using the NeMo toolkit [3], following the strategies below:
292
 
293
- - Initialized from a wav2vec SSL checkpoint pretrained on the LibriLight dataset[7].
294
- - Trained for 150,000 steps on 128 A100 GPUs.
295
- - Dataset corpora were balanced using a temperature sampling value of 0.5.
296
- - Stage 2 fine-tuning was performed for 2,500 steps on 4 A100 GPUs using approximately 500 hours of high-quality, human-transcribed data of NeMo ASR Set 3.0.
297
 
298
- Training was conducted using this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and [TDT configuration](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_tdt_ctc_bpe.yaml).
299
 
300
- The tokenizer was constructed from the training set transcripts using this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
301
 
302
- ### <span style="color:#466f00;">Training Dataset</span>
303
- The model was trained on the Granary dataset, consisting of approximately 120,000 hours of English speech data:
304
 
305
- - 10,000 hours from human-transcribed NeMo ASR Set 3.0, including:
306
- - LibriSpeech (960 hours)
307
- - Fisher Corpus
308
- - National Speech Corpus Part 1
309
- - VCTK
310
- - VoxPopuli (English)
311
- - Europarl-ASR (English)
312
- - Multilingual LibriSpeech (MLS English) – 2,000-hour subset
313
- - Mozilla Common Voice (v7.0)
314
- - AMI
315
 
316
- - 110,000 hours of pseudo-labeled data from:
317
- - YTC (YouTube-Commons) dataset[4]
318
- - YODAS dataset [5]
319
- - Librilight [7]
320
 
321
- All transcriptions preserve punctuation and capitalization. The Granary dataset will be made publicly available after presentation at Interspeech 2025.
322
 
323
- **Data Collection Method by dataset**
324
 
325
- * Hybrid: Automated, Human
326
 
327
- **Labeling Method by dataset**
328
 
329
- * Hybrid: Synthetic, Human
330
 
331
- **Properties:**
332
 
333
- * Noise robust data from various sources
334
- * Single channel, 16kHz sampled data
335
 
336
- #### Evaluation Dataset
337
 
338
- Huggingface Open ASR Leaderboard datasets are used to evaluate the performance of this model.
339
 
340
- **Data Collection Method by dataset**
341
- * Human
342
 
343
- **Labeling Method by dataset**
344
- * Human
345
 
346
- **Properties:**
347
 
348
- * All are commonly used for benchmarking English ASR systems.
349
- * Audio data is typically processed into a 16kHz mono channel format for ASR evaluation, consistent with benchmarks like the [Open ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).
 
 
 
350
 
351
- ## <span style="color:#466f00;">Performance</span>
352
 
353
- #### Huggingface Open-ASR-Leaderboard Performance
354
- The performance of Automatic Speech Recognition (ASR) models is measured using Word Error Rate (WER). Given that this model is trained on a large and diverse dataset spanning multiple domains, it is generally more robust and accurate across various types of audio.
355
 
356
- ### Base Performance
357
- The table below summarizes the WER (%) using a Transducer decoder with greedy decoding (without an external language model):
358
 
359
- | **Model** | **Avg WER** | **AMI** | **Earnings-22** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI Speech** | **TEDLIUM-v3** | **VoxPopuli** |
360
- |:-------------|:-------------:|:---------:|:------------------:|:----------------:|:-----------------:|:-----------------:|:------------------:|:----------------:|:---------------:|
361
- | parakeet-tdt-0.6b-v2 | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
362
 
363
- ### Noise Robustness
364
- Performance across different Signal-to-Noise Ratios (SNR) using MUSAN music and noise samples:
365
 
366
- | **SNR Level** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** |
367
- |:---------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
368
- | Clean | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
369
- | SNR 50 | 6.04 | 11.11 | 11.12 | 9.74 | 1.70 | 3.18 | 2.18 | 3.34 | 5.98 | +0.25% |
370
- | SNR 25 | 6.50 | 12.76 | 11.50 | 9.98 | 1.78 | 3.63 | 2.54 | 3.46 | 6.34 | -7.04% |
371
- | SNR 5 | 8.39 | 19.33 | 13.83 | 11.28 | 2.36 | 5.50 | 3.91 | 3.91 | 6.96 | -38.11% |
372
 
373
- ### Telephony Audio Performance
374
- Performance comparison between standard 16kHz audio and telephony-style audio (using μ-law encoding with 16kHz→8kHz→16kHz conversion):
375
 
376
- | **Audio Format** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** |
377
- |:-----------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
378
- | Standard 16kHz | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
379
- | μ-law 8kHz | 6.32 | 11.98 | 11.16 | 10.02 | 1.78 | 3.52 | 2.20 | 3.38 | 6.52 | -4.10% |
380
 
381
- These WER scores were obtained using greedy decoding without an external language model. Additional evaluation details are available on the [Hugging Face ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).[6]
382
 
 
383
 
 
384
 
385
- ## <span style="color:#466f00;">References</span>
386
 
387
- [1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
388
 
389
- [2] [Efficient Sequence Transduction by Jointly Predicting Tokens and Durations](https://arxiv.org/abs/2304.06795)
390
 
391
- [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
392
 
393
- [4] [Youtube-commons: A massive open corpus for conversational and multimodal data](https://huggingface.co/blog/Pclanglais/youtube-commons)
394
 
395
- [5] [Yodas: Youtube-oriented dataset for audio and speech](https://arxiv.org/abs/2406.00899)
396
 
397
- [6] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
398
 
399
- [7] [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](https://arxiv.org/abs/2410.01036)
400
 
401
- ## <span style="color:#466f00;">Inference:</span>
402
 
403
- **Engine**:
404
- * NVIDIA NeMo
405
 
406
- **Test Hardware**:
407
- * NVIDIA A10
408
- * NVIDIA A100
409
- * NVIDIA A30
410
- * NVIDIA H100
411
- * NVIDIA L4
412
- * NVIDIA L40
413
- * NVIDIA Turing T4
414
- * NVIDIA Volta V100
415
 
416
- ## <span style="color:#466f00;">Ethical Considerations:</span>
417
- NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their supporting model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
418
 
419
- For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards [here](https://developer.nvidia.com/blog/enhancing-ai-transparency-and-ethical-considerations-with-model-card/).
420
-
421
- Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
422
-
423
- ## <span style="color:#466f00;">Bias:</span>
424
-
425
- Field | Response
426
- ---------------------------------------------------------------------------------------------------|---------------
427
- Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing | None
428
- Measures taken to mitigate against unwanted bias | None
429
-
430
- ## <span style="color:#466f00;">Explainability:</span>
431
-
432
- Field | Response
433
- ------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------
434
- Intended Domain | Speech to Text Transcription
435
- Model Type | FastConformer
436
- Intended Users | This model is intended for developers, researchers, academics, and industries building conversational based applications.
437
- Output | Text
438
- Describe how the model works | Speech input is encoded into embeddings and passed into conformer-based model and output a text response.
439
- Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of | Not Applicable
440
- Technical Limitations & Mitigation | Transcripts may be not 100% accurate. Accuracy varies based on language and characteristics of input audio (Domain, Use Case, Accent, Noise, Speech Type, Context of speech, etc.)
441
- Verified to have met prescribed NVIDIA quality standards | Yes
442
- Performance Metrics | Word Error Rate
443
- Potential Known Risks | If a word is not trained in the language model and not presented in vocabulary, the word is not likely to be recognized. Not recommended for word-for-word/incomplete sentences as accuracy varies based on the context of input text
444
- Licensing | GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.
445
-
446
- ## <span style="color:#466f00;">Privacy:</span>
447
-
448
- Field | Response
449
- ----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------
450
- Generatable or reverse engineerable personal data? | None
451
- Personal data used to create this model? | None
452
- Is there provenance for all datasets used in training? | Yes
453
- Does data labeling (annotation, metadata) comply with privacy laws? | Yes
454
- Is data compliant with data subject requests for data correction or removal, if such a request was made? | No, not possible with externally-sourced data.
455
- Applicable Privacy Policy | https://www.nvidia.com/en-us/about-nvidia/privacy-policy/
456
-
457
- ## <span style="color:#466f00;">Safety:</span>
458
-
459
- Field | Response
460
- ---------------------------------------------------|----------------------------------
461
- Model Application(s) | Speech to Text Transcription
462
- Describe the life critical impact | None
463
- Use Case Restrictions | Abide by [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) License
464
- Model and dataset restrictions | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to.
 
147
  - wer
148
  ---
149
 
150
+ # Model Card for Model ID
151
 
152
+ <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
153
 
154
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
 
 
155
 
156
+ ## Model Details
157
 
158
+ ### Model Description
159
 
160
+ <!-- Provide a longer summary of what this model is. -->
161
 
 
162
 
 
 
 
 
163
 
164
+ - **Developed by:** [More Information Needed]
165
+ - **Funded by [optional]:** [More Information Needed]
166
+ - **Shared by [optional]:** [More Information Needed]
167
+ - **Model type:** [More Information Needed]
168
+ - **Language(s) (NLP):** [More Information Needed]
169
+ - **License:** [More Information Needed]
170
+ - **Finetuned from model [optional]:** [More Information Needed]
171
 
172
+ ### Model Sources [optional]
173
 
174
+ <!-- Provide the basic links for the model. -->
175
 
176
+ - **Repository:** [More Information Needed]
177
+ - **Paper [optional]:** [More Information Needed]
178
+ - **Demo [optional]:** [More Information Needed]
179
 
180
+ ## Uses
181
 
182
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
183
 
184
+ ### Direct Use
 
185
 
186
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
187
 
188
+ [More Information Needed]
189
 
190
+ ### Downstream Use [optional]
191
 
192
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
193
 
194
+ [More Information Needed]
195
 
196
+ ### Out-of-Scope Use
197
 
198
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
199
 
200
+ [More Information Needed]
201
 
202
+ ## Bias, Risks, and Limitations
203
 
204
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
205
 
206
+ [More Information Needed]
 
207
 
208
+ ### Recommendations
 
 
 
 
209
 
210
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
211
 
212
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
213
 
214
+ ## How to Get Started with the Model
215
 
216
+ Use the code below to get started with the model.
 
 
 
 
217
 
218
+ [More Information Needed]
219
 
220
+ ## Training Details
 
 
 
221
 
222
+ ### Training Data
 
 
 
 
 
 
 
 
 
223
 
224
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
225
 
226
+ [More Information Needed]
 
 
 
 
 
 
227
 
228
+ ### Training Procedure
 
 
229
 
230
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
231
 
232
+ #### Preprocessing [optional]
233
 
234
+ [More Information Needed]
 
235
 
236
 
237
+ #### Training Hyperparameters
 
 
 
 
238
 
239
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
240
 
241
+ #### Speeds, Sizes, Times [optional]
242
 
243
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
244
 
245
+ [More Information Needed]
246
 
247
+ ## Evaluation
248
 
249
+ <!-- This section describes the evaluation protocols and provides the results. -->
250
 
251
+ ### Testing Data, Factors & Metrics
252
 
253
+ #### Testing Data
254
 
255
+ <!-- This should link to a Dataset Card if possible. -->
256
 
257
+ [More Information Needed]
 
 
 
258
 
259
+ #### Factors
260
 
261
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
262
 
263
+ [More Information Needed]
 
264
 
265
+ #### Metrics
 
 
 
 
 
 
 
 
 
266
 
267
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
268
 
269
+ [More Information Needed]
270
 
271
+ ### Results
272
 
273
+ [More Information Needed]
274
 
275
+ #### Summary
276
 
 
277
 
 
278
 
279
+ ## Model Examination [optional]
 
280
 
281
+ <!-- Relevant interpretability work for the model goes here -->
282
 
283
+ [More Information Needed]
284
 
285
+ ## Environmental Impact
 
286
 
287
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
288
 
289
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
290
 
291
+ - **Hardware Type:** [More Information Needed]
292
+ - **Hours used:** [More Information Needed]
293
+ - **Cloud Provider:** [More Information Needed]
294
+ - **Compute Region:** [More Information Needed]
295
+ - **Carbon Emitted:** [More Information Needed]
296
 
297
+ ## Technical Specifications [optional]
298
 
299
+ ### Model Architecture and Objective
 
300
 
301
+ [More Information Needed]
 
302
 
303
+ ### Compute Infrastructure
 
 
304
 
305
+ [More Information Needed]
 
306
 
307
+ #### Hardware
 
 
 
 
 
308
 
309
+ [More Information Needed]
 
310
 
311
+ #### Software
 
 
 
312
 
313
+ [More Information Needed]
314
 
315
+ ## Citation [optional]
316
 
317
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
318
 
319
+ **BibTeX:**
320
 
321
+ [More Information Needed]
322
 
323
+ **APA:**
324
 
325
+ [More Information Needed]
326
 
327
+ ## Glossary [optional]
328
 
329
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
330
 
331
+ [More Information Needed]
332
 
333
+ ## More Information [optional]
334
 
335
+ [More Information Needed]
336
 
337
+ ## Model Card Authors [optional]
 
338
 
339
+ [More Information Needed]
 
 
 
 
 
 
 
 
340
 
341
+ ## Model Card Contact
 
342
 
343
+ [More Information Needed]