GGUF
English
Mixture of Experts
Merge
Kquant03 commited on
Commit
c4dcd5a
·
verified ·
1 Parent(s): 8e86422

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -8
README.md CHANGED
@@ -25,19 +25,21 @@ The config looks like this...(detailed version is in the files and versions):
25
  - [ConvexAI/Metabird-7B](https://huggingface.co/ConvexAI/Metabird-7B) - expert #3
26
  - [alnrg2arg/test3_sft_16bit](https://huggingface.co/alnrg2arg/test3_sft_16bit) - expert #4
27
 
28
- # I just now uploaded it to Open LLM Evaluations, just to see how it will do.
 
 
29
  ## Provided files
30
 
31
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
32
  | ---- | ---- | ---- | ---- | ---- | ----- |
33
  | [Q2_K Tiny](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q2_k.gguf) | Q2_K | 2 | 8.84 GB| 10.84 GB | smallest, significant quality loss - not recommended for most purposes |
34
- | [Q3_K_M](https://huggingface.co/Kquant03/Buttercup-4x7B-GGUF/blob/main/ggml-model-q3_k_m.gguf) | Q3_K_M | 3 | 11.6 GB| 13.6 GB | very small, high quality loss |
35
- | [Q4_0](https://huggingface.co/Kquant03/Buttercup-4x7B-GGUF/blob/main/ggml-model-q4_0.gguf) | Q4_0 | 4 | 13.6 GB| 15.6 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
36
- | [Q4_K_M](https://huggingface.co/Kquant03/Buttercup-4x7B-GGUF/blob/main/ggml-model-q4_k_m.gguf) | Q4_K_M | 4 | 14.6 GB| 16.6 GB | medium, balanced quality - recommended |
37
- | [Q5_0](https://huggingface.co/Kquant03/Buttercup-4x7B-GGUF/blob/main/ggml-model-q5_0.gguf) | Q5_0 | 5 | 16.6 GB| 18.6 GB | legacy; large, balanced quality |
38
- | [Q5_K_M](https://huggingface.co/Kquant03/Buttercup-4x7B-GGUF/blob/main/ggml-model-q5_k_m.gguf) | Q5_K_M | 5 | 17.1 GB| 19.1 GB | large, balanced quality - recommended |
39
- | [Q6 XL](https://huggingface.co/Kquant03/Buttercup-4x7B-GGUF/blob/main/ggml-model-q6_k.gguf) | Q6_K | 6 | 19.8 GB| 21.8 GB | very large, extremely minor degradation |
40
- | [Q8 XXL](https://huggingface.co/Kquant03/Buttercup-4x7B-GGUF/blob/main/ggml-model-q8_0.gguf) | Q8_0 | 8 | 25.7 GB| 27.7 GB | very large, extremely minor degradation - not recommended |
41
  # "[What is a Mixture of Experts (MoE)?](https://huggingface.co/blog/moe)"
42
  ### (from the MistralAI papers...click the quoted question above to navigate to it directly.)
43
 
 
25
  - [ConvexAI/Metabird-7B](https://huggingface.co/ConvexAI/Metabird-7B) - expert #3
26
  - [alnrg2arg/test3_sft_16bit](https://huggingface.co/alnrg2arg/test3_sft_16bit) - expert #4
27
 
28
+ # It manages to beat Buttercup-4x7B in MMLU, and I personally think it's on-par to it, if not better.
29
+
30
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/hQ44cGgs0cSf-sIv8Xk01.png)
31
  ## Provided files
32
 
33
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
34
  | ---- | ---- | ---- | ---- | ---- | ----- |
35
  | [Q2_K Tiny](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q2_k.gguf) | Q2_K | 2 | 8.84 GB| 10.84 GB | smallest, significant quality loss - not recommended for most purposes |
36
+ | [Q3_K_M](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q3_k_m.gguf) | Q3_K_M | 3 | 11.6 GB| 13.6 GB | very small, high quality loss |
37
+ | [Q4_0](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q4_0.gguf) | Q4_0 | 4 | 13.6 GB| 15.6 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
38
+ | [Q4_K_M](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q4_k_m.gguf) | Q4_K_M | 4 | 14.6 GB| 16.6 GB | medium, balanced quality - recommended |
39
+ | [Q5_0](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q5_0.gguf) | Q5_0 | 5 | 16.6 GB| 18.6 GB | legacy; large, balanced quality |
40
+ | [Q5_K_M](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q5_k_m.gguf) | Q5_K_M | 5 | 17.1 GB| 19.1 GB | large, balanced quality - recommended |
41
+ | [Q6 XL](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q6_k.gguf) | Q6_K | 6 | 19.8 GB| 21.8 GB | very large, extremely minor degradation |
42
+ | [Q8 XXL](https://huggingface.co/ConvexAI/Harmony-4x7B-GGUF/blob/main/ggml-model-q8_0.gguf) | Q8_0 | 8 | 25.7 GB| 27.7 GB | very large, extremely minor degradation - not recommended |
43
  # "[What is a Mixture of Experts (MoE)?](https://huggingface.co/blog/moe)"
44
  ### (from the MistralAI papers...click the quoted question above to navigate to it directly.)
45