Add SetFit model
Browse files- README.md +645 -166
- config.json +3 -3
- config_sentence_transformers.json +2 -2
- model.safetensors +2 -2
- model_head.pkl +1 -1
- modules.json +6 -0
- sentence_bert_config.json +1 -1
- special_tokens_map.json +5 -13
- tokenizer.json +2 -2
- tokenizer_config.json +17 -17
- vocab.txt +0 -0
README.md
CHANGED
@@ -8,27 +8,23 @@ tags:
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
widget:
|
11 |
-
- text:
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
- text:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
fibrosis.
|
24 |
-
- text: The study of anaerobic digestion for organic solid wastes has led to significant
|
25 |
-
improvements in process efficiency, with methane yields increasing by up to 30%
|
26 |
-
through the optimization of operational parameters.
|
27 |
pipeline_tag: text-classification
|
28 |
inference: true
|
29 |
-
base_model: sentence-transformers/
|
30 |
model-index:
|
31 |
-
- name: SetFit with sentence-transformers/
|
32 |
results:
|
33 |
- task:
|
34 |
type: text-classification
|
@@ -39,13 +35,13 @@ model-index:
|
|
39 |
split: test
|
40 |
metrics:
|
41 |
- type: accuracy
|
42 |
-
value: 0.
|
43 |
name: Accuracy
|
44 |
---
|
45 |
|
46 |
-
# SetFit with sentence-transformers/
|
47 |
|
48 |
-
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/
|
49 |
|
50 |
The model has been trained using an efficient few-shot learning technique that involves:
|
51 |
|
@@ -56,9 +52,9 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
56 |
|
57 |
### Model Description
|
58 |
- **Model Type:** SetFit
|
59 |
-
- **Sentence Transformer body:** [sentence-transformers/
|
60 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
61 |
-
- **Maximum Sequence Length:**
|
62 |
- **Number of Classes:** 103 classes
|
63 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
64 |
<!-- - **Language:** Unknown -->
|
@@ -182,7 +178,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
182 |
### Metrics
|
183 |
| Label | Accuracy |
|
184 |
|:--------|:---------|
|
185 |
-
| **all** | 0.
|
186 |
|
187 |
## Uses
|
188 |
|
@@ -202,7 +198,7 @@ from setfit import SetFitModel
|
|
202 |
# Download from the 🤗 Hub
|
203 |
model = SetFitModel.from_pretrained("Corran/SciGenSetfit")
|
204 |
# Run inference
|
205 |
-
preds = model("
|
206 |
```
|
207 |
|
208 |
<!--
|
@@ -234,120 +230,120 @@ preds = model("This study aimed to investigate the efficacy and safety of amitri
|
|
234 |
### Training Set Metrics
|
235 |
| Training set | Min | Median | Max |
|
236 |
|:-------------|:----|:--------|:----|
|
237 |
-
| Word count | 6 | 28.
|
238 |
|
239 |
| Label | Training Sample Count |
|
240 |
|:-------------------------------------------------------------------------------------------------------------------------|:----------------------|
|
241 |
-
| Acknowledging limitation(s) whilst stating a finding or contribution |
|
242 |
-
| Advising cautious interpretation of the findings |
|
243 |
-
| Commenting on the findings |
|
244 |
-
| Commenting on the strengths of the current study |
|
245 |
-
| Comparing the result: contradicting previous findings |
|
246 |
-
| Comparing the result: supporting previous findings |
|
247 |
-
| Contrasting sources with ‘however’ for emphasis |
|
248 |
-
| Describing previously used methods |
|
249 |
-
| Describing questionnaire design |
|
250 |
-
| Describing the characteristics of the participants |
|
251 |
-
| Describing the limitations of the current study |
|
252 |
-
| Describing the process: adverbs of manner |
|
253 |
-
| Describing the process: expressing purpose with for |
|
254 |
-
| Describing the process: infinitive of purpose |
|
255 |
-
| Describing the process: sequence words |
|
256 |
-
| Describing the process: statistical procedures |
|
257 |
-
| Describing the process: typical verbs in the passive form |
|
258 |
-
| Describing the process: using + instrument |
|
259 |
-
| Describing the research design and the methods used |
|
260 |
-
| Describing what other writers do in their published work |
|
261 |
-
| Detailing specific limitations |
|
262 |
-
| Establishing the importance of the topic for the discipline |
|
263 |
-
| Establishing the importance of the topic for the discipline: time frame given |
|
264 |
-
| Establishing the importance of the topic for the world or society |
|
265 |
-
| Establishing the importance of the topic for the world or society: time frame given |
|
266 |
-
| Establising the importance of the topic as a problem to be addressed |
|
267 |
-
| Explaining keywords (also refer to Defining Terms) |
|
268 |
-
| Explaining the provenance of articles for review |
|
269 |
-
| Explaining the provenance of the participants |
|
270 |
-
| Explaining the significance of the current study |
|
271 |
-
| Explaining the significance of the findings or contribution of the study |
|
272 |
-
| General comments on the relevant literature |
|
273 |
-
| General reference to previous research or scholarship: highlighting negative outcomes |
|
274 |
-
| Giving reasons for personal interest in the research (sometimes found in the humanities, and the applied human sciences) |
|
275 |
-
| Giving reasons why a particular method was adopted |
|
276 |
-
| Giving reasons why a particular method was rejected |
|
277 |
-
| Highlighting inadequacies or weaknesses of previous studies (also refer to Being Critical) |
|
278 |
-
| Highlighting interesting or surprising results |
|
279 |
-
| Highlighting significant data in a table or chart |
|
280 |
-
| Identifying a controversy within the field of study |
|
281 |
-
| Identifying a knowledge gap in the field of study |
|
282 |
-
| Implications and/or recommendations for practice or policy |
|
283 |
-
| Indicating an expected outcome |
|
284 |
-
| Indicating an unexpected outcome |
|
285 |
-
| Indicating criteria for selection or inclusion in the study |
|
286 |
-
| Indicating methodological problems or limitations |
|
287 |
-
| Indicating missing, weak, or contradictory evidence |
|
288 |
-
| Indicating the methodology for the current research |
|
289 |
-
| Indicating the use of an established method |
|
290 |
-
| Introducing the limitations of the current study |
|
291 |
-
| Making recommendations for further research work |
|
292 |
-
| Noting implications of the findings |
|
293 |
-
| Noting the lack of or paucity of previous research |
|
294 |
-
| Offering an explanation for the findings |
|
295 |
-
| Outlining the structure of a short paper |
|
296 |
-
| Outlining the structure of a thesis or dissertation |
|
297 |
-
| Pointing out interesting or important findings |
|
298 |
-
| Previewing a chapter |
|
299 |
-
| Previous research: A historic perspective |
|
300 |
-
| Previous research: Approaches taken |
|
301 |
-
| Previous research: What has been established or proposed |
|
302 |
-
| Previous research: area investigated as the sentence object |
|
303 |
-
| Previous research: area investigated as the sentence subject |
|
304 |
-
| Previous research: highlighting negative outcomes |
|
305 |
-
| Providing background information: reference to the literature |
|
306 |
-
| Providing background information: reference to the purpose of the study |
|
307 |
-
| Reference to previous research: important studies |
|
308 |
-
| Referring back to the purpose of the paper or study |
|
309 |
-
| Referring back to the research aims or procedures |
|
310 |
-
| Referring to a single investigation in the past: investigation prominent |
|
311 |
-
| Referring to a single investigation in the past: researcher prominent |
|
312 |
-
| Referring to another writer’s idea(s) or position |
|
313 |
-
| Referring to data in a table or chart |
|
314 |
-
| Referring to important texts in the area of interest |
|
315 |
-
| Referring to previous work to establish what is already known |
|
316 |
-
| Referring to secondary sources |
|
317 |
-
| Referring to the literature to justify a method or approach |
|
318 |
-
| Reporting positive and negative reactions |
|
319 |
-
| Restating a result or one of several results |
|
320 |
-
| Setting out the research questions or hypotheses |
|
321 |
-
| Some ways of introducing quotations |
|
322 |
-
| Stating a negative result |
|
323 |
-
| Stating a positive result |
|
324 |
-
| Stating purpose of the current research with reference to gaps or issues in the literature |
|
325 |
-
| Stating the aims of the current research (note frequent use of past tense) |
|
326 |
-
| Stating the focus, aim, or argument of a short paper |
|
327 |
-
| Stating the purpose of the thesis, dissertation, or research article (note use of present tense) |
|
328 |
-
| Stating what is currently known about the topic |
|
329 |
-
| Suggesting general hypotheses |
|
330 |
-
| Suggesting implications for what is already known |
|
331 |
-
| Suggestions for future work |
|
332 |
-
| Summarising the literature review |
|
333 |
-
| Summarising the main research findings |
|
334 |
-
| Summarising the results section |
|
335 |
-
| Summarising the studies reviewed |
|
336 |
-
| Surveys and interviews: Introducing excerpts from interview data |
|
337 |
-
| Surveys and interviews: Reporting participants’ views |
|
338 |
-
| Surveys and interviews: Reporting proportions |
|
339 |
-
| Surveys and interviews: Reporting response rates |
|
340 |
-
| Surveys and interviews: Reporting themes |
|
341 |
-
| Synthesising sources: contrasting evidence or ideas |
|
342 |
-
| Synthesising sources: supporting evidence or ideas |
|
343 |
-
| Transition: moving to the next result |
|
344 |
|
345 |
### Training Hyperparameters
|
346 |
-
- batch_size: (
|
347 |
- num_epochs: (1, 1)
|
348 |
- max_steps: -1
|
349 |
- sampling_strategy: oversampling
|
350 |
-
- num_iterations:
|
351 |
- body_learning_rate: (2e-05, 1e-05)
|
352 |
- head_learning_rate: 0.01
|
353 |
- loss: CosineSimilarityLoss
|
@@ -361,41 +357,524 @@ preds = model("This study aimed to investigate the efficacy and safety of amitri
|
|
361 |
- load_best_model_at_end: False
|
362 |
|
363 |
### Training Results
|
364 |
-
| Epoch | Step
|
365 |
-
|
366 |
-
| 0.
|
367 |
-
| 0.
|
368 |
-
| 0.
|
369 |
-
| 0.
|
370 |
-
| 0.
|
371 |
-
| 0.
|
372 |
-
| 0.
|
373 |
-
| 0.
|
374 |
-
| 0.
|
375 |
-
| 0.
|
376 |
-
| 0.
|
377 |
-
| 0.
|
378 |
-
| 0.
|
379 |
-
| 0.
|
380 |
-
| 0.
|
381 |
-
| 0.
|
382 |
-
| 0.
|
383 |
-
| 0.
|
384 |
-
| 0.
|
385 |
-
| 0.
|
386 |
-
| 0.
|
387 |
-
| 0.
|
388 |
-
| 0.
|
389 |
-
| 0.
|
390 |
-
| 0.
|
391 |
-
| 0.
|
392 |
-
| 0.
|
393 |
-
| 0.
|
394 |
-
| 0.
|
395 |
-
| 0.
|
396 |
-
| 0.
|
397 |
-
| 0.
|
398 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
### Framework Versions
|
401 |
- Python: 3.10.12
|
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
widget:
|
11 |
+
- text: Despite the overall trend of mass loss, some glaciers in the western Himalayas
|
12 |
+
exhibited small gains in mass between 2000 and 2016.
|
13 |
+
- text: This study focuses on analyzing traffic data from roads with a design speed
|
14 |
+
of at least 80 km/h and a daily traffic volume exceeding 10,000 vehicles.
|
15 |
+
- text: This paper explores the intricacies of memory storage at the molecular level,
|
16 |
+
focusing on the interplay between genes and synapses.
|
17 |
+
- text: This chapter explores the calculation of chemical reactivity indexes using
|
18 |
+
density functional theory, providing a comprehensive analysis of their applicability
|
19 |
+
and accuracy in predicting chemical reactions.
|
20 |
+
- text: Prospect theory, introduced by Kahneman and Tversky (1979), has significantly
|
21 |
+
advanced our understanding of decision-making under risk and uncertainty in mathematical
|
22 |
+
economics and behavioral finance.
|
|
|
|
|
|
|
|
|
23 |
pipeline_tag: text-classification
|
24 |
inference: true
|
25 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
26 |
model-index:
|
27 |
+
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
|
28 |
results:
|
29 |
- task:
|
30 |
type: text-classification
|
|
|
35 |
split: test
|
36 |
metrics:
|
37 |
- type: accuracy
|
38 |
+
value: 0.7116504854368932
|
39 |
name: Accuracy
|
40 |
---
|
41 |
|
42 |
+
# SetFit with sentence-transformers/all-MiniLM-L6-v2
|
43 |
|
44 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
45 |
|
46 |
The model has been trained using an efficient few-shot learning technique that involves:
|
47 |
|
|
|
52 |
|
53 |
### Model Description
|
54 |
- **Model Type:** SetFit
|
55 |
+
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
|
56 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
57 |
+
- **Maximum Sequence Length:** 256 tokens
|
58 |
- **Number of Classes:** 103 classes
|
59 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
60 |
<!-- - **Language:** Unknown -->
|
|
|
178 |
### Metrics
|
179 |
| Label | Accuracy |
|
180 |
|:--------|:---------|
|
181 |
+
| **all** | 0.7117 |
|
182 |
|
183 |
## Uses
|
184 |
|
|
|
198 |
# Download from the 🤗 Hub
|
199 |
model = SetFitModel.from_pretrained("Corran/SciGenSetfit")
|
200 |
# Run inference
|
201 |
+
preds = model("Despite the overall trend of mass loss, some glaciers in the western Himalayas exhibited small gains in mass between 2000 and 2016.")
|
202 |
```
|
203 |
|
204 |
<!--
|
|
|
230 |
### Training Set Metrics
|
231 |
| Training set | Min | Median | Max |
|
232 |
|:-------------|:----|:--------|:----|
|
233 |
+
| Word count | 6 | 28.3746 | 62 |
|
234 |
|
235 |
| Label | Training Sample Count |
|
236 |
|:-------------------------------------------------------------------------------------------------------------------------|:----------------------|
|
237 |
+
| Acknowledging limitation(s) whilst stating a finding or contribution | 100 |
|
238 |
+
| Advising cautious interpretation of the findings | 100 |
|
239 |
+
| Commenting on the findings | 100 |
|
240 |
+
| Commenting on the strengths of the current study | 100 |
|
241 |
+
| Comparing the result: contradicting previous findings | 100 |
|
242 |
+
| Comparing the result: supporting previous findings | 100 |
|
243 |
+
| Contrasting sources with ‘however’ for emphasis | 100 |
|
244 |
+
| Describing previously used methods | 100 |
|
245 |
+
| Describing questionnaire design | 100 |
|
246 |
+
| Describing the characteristics of the participants | 100 |
|
247 |
+
| Describing the limitations of the current study | 100 |
|
248 |
+
| Describing the process: adverbs of manner | 100 |
|
249 |
+
| Describing the process: expressing purpose with for | 100 |
|
250 |
+
| Describing the process: infinitive of purpose | 100 |
|
251 |
+
| Describing the process: sequence words | 100 |
|
252 |
+
| Describing the process: statistical procedures | 100 |
|
253 |
+
| Describing the process: typical verbs in the passive form | 100 |
|
254 |
+
| Describing the process: using + instrument | 100 |
|
255 |
+
| Describing the research design and the methods used | 100 |
|
256 |
+
| Describing what other writers do in their published work | 100 |
|
257 |
+
| Detailing specific limitations | 100 |
|
258 |
+
| Establishing the importance of the topic for the discipline | 100 |
|
259 |
+
| Establishing the importance of the topic for the discipline: time frame given | 100 |
|
260 |
+
| Establishing the importance of the topic for the world or society | 100 |
|
261 |
+
| Establishing the importance of the topic for the world or society: time frame given | 100 |
|
262 |
+
| Establising the importance of the topic as a problem to be addressed | 100 |
|
263 |
+
| Explaining keywords (also refer to Defining Terms) | 100 |
|
264 |
+
| Explaining the provenance of articles for review | 100 |
|
265 |
+
| Explaining the provenance of the participants | 100 |
|
266 |
+
| Explaining the significance of the current study | 100 |
|
267 |
+
| Explaining the significance of the findings or contribution of the study | 100 |
|
268 |
+
| General comments on the relevant literature | 100 |
|
269 |
+
| General reference to previous research or scholarship: highlighting negative outcomes | 100 |
|
270 |
+
| Giving reasons for personal interest in the research (sometimes found in the humanities, and the applied human sciences) | 100 |
|
271 |
+
| Giving reasons why a particular method was adopted | 100 |
|
272 |
+
| Giving reasons why a particular method was rejected | 100 |
|
273 |
+
| Highlighting inadequacies or weaknesses of previous studies (also refer to Being Critical) | 100 |
|
274 |
+
| Highlighting interesting or surprising results | 100 |
|
275 |
+
| Highlighting significant data in a table or chart | 100 |
|
276 |
+
| Identifying a controversy within the field of study | 100 |
|
277 |
+
| Identifying a knowledge gap in the field of study | 100 |
|
278 |
+
| Implications and/or recommendations for practice or policy | 100 |
|
279 |
+
| Indicating an expected outcome | 100 |
|
280 |
+
| Indicating an unexpected outcome | 100 |
|
281 |
+
| Indicating criteria for selection or inclusion in the study | 100 |
|
282 |
+
| Indicating methodological problems or limitations | 100 |
|
283 |
+
| Indicating missing, weak, or contradictory evidence | 100 |
|
284 |
+
| Indicating the methodology for the current research | 100 |
|
285 |
+
| Indicating the use of an established method | 100 |
|
286 |
+
| Introducing the limitations of the current study | 100 |
|
287 |
+
| Making recommendations for further research work | 100 |
|
288 |
+
| Noting implications of the findings | 100 |
|
289 |
+
| Noting the lack of or paucity of previous research | 100 |
|
290 |
+
| Offering an explanation for the findings | 100 |
|
291 |
+
| Outlining the structure of a short paper | 100 |
|
292 |
+
| Outlining the structure of a thesis or dissertation | 100 |
|
293 |
+
| Pointing out interesting or important findings | 100 |
|
294 |
+
| Previewing a chapter | 100 |
|
295 |
+
| Previous research: A historic perspective | 100 |
|
296 |
+
| Previous research: Approaches taken | 100 |
|
297 |
+
| Previous research: What has been established or proposed | 100 |
|
298 |
+
| Previous research: area investigated as the sentence object | 100 |
|
299 |
+
| Previous research: area investigated as the sentence subject | 100 |
|
300 |
+
| Previous research: highlighting negative outcomes | 100 |
|
301 |
+
| Providing background information: reference to the literature | 100 |
|
302 |
+
| Providing background information: reference to the purpose of the study | 100 |
|
303 |
+
| Reference to previous research: important studies | 100 |
|
304 |
+
| Referring back to the purpose of the paper or study | 100 |
|
305 |
+
| Referring back to the research aims or procedures | 100 |
|
306 |
+
| Referring to a single investigation in the past: investigation prominent | 100 |
|
307 |
+
| Referring to a single investigation in the past: researcher prominent | 100 |
|
308 |
+
| Referring to another writer’s idea(s) or position | 100 |
|
309 |
+
| Referring to data in a table or chart | 100 |
|
310 |
+
| Referring to important texts in the area of interest | 100 |
|
311 |
+
| Referring to previous work to establish what is already known | 100 |
|
312 |
+
| Referring to secondary sources | 100 |
|
313 |
+
| Referring to the literature to justify a method or approach | 100 |
|
314 |
+
| Reporting positive and negative reactions | 100 |
|
315 |
+
| Restating a result or one of several results | 100 |
|
316 |
+
| Setting out the research questions or hypotheses | 100 |
|
317 |
+
| Some ways of introducing quotations | 100 |
|
318 |
+
| Stating a negative result | 100 |
|
319 |
+
| Stating a positive result | 100 |
|
320 |
+
| Stating purpose of the current research with reference to gaps or issues in the literature | 100 |
|
321 |
+
| Stating the aims of the current research (note frequent use of past tense) | 100 |
|
322 |
+
| Stating the focus, aim, or argument of a short paper | 100 |
|
323 |
+
| Stating the purpose of the thesis, dissertation, or research article (note use of present tense) | 100 |
|
324 |
+
| Stating what is currently known about the topic | 100 |
|
325 |
+
| Suggesting general hypotheses | 100 |
|
326 |
+
| Suggesting implications for what is already known | 100 |
|
327 |
+
| Suggestions for future work | 100 |
|
328 |
+
| Summarising the literature review | 100 |
|
329 |
+
| Summarising the main research findings | 100 |
|
330 |
+
| Summarising the results section | 100 |
|
331 |
+
| Summarising the studies reviewed | 100 |
|
332 |
+
| Surveys and interviews: Introducing excerpts from interview data | 100 |
|
333 |
+
| Surveys and interviews: Reporting participants’ views | 100 |
|
334 |
+
| Surveys and interviews: Reporting proportions | 100 |
|
335 |
+
| Surveys and interviews: Reporting response rates | 100 |
|
336 |
+
| Surveys and interviews: Reporting themes | 100 |
|
337 |
+
| Synthesising sources: contrasting evidence or ideas | 100 |
|
338 |
+
| Synthesising sources: supporting evidence or ideas | 100 |
|
339 |
+
| Transition: moving to the next result | 100 |
|
340 |
|
341 |
### Training Hyperparameters
|
342 |
+
- batch_size: (64, 64)
|
343 |
- num_epochs: (1, 1)
|
344 |
- max_steps: -1
|
345 |
- sampling_strategy: oversampling
|
346 |
+
- num_iterations: 80
|
347 |
- body_learning_rate: (2e-05, 1e-05)
|
348 |
- head_learning_rate: 0.01
|
349 |
- loss: CosineSimilarityLoss
|
|
|
357 |
- load_best_model_at_end: False
|
358 |
|
359 |
### Training Results
|
360 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
361 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
362 |
+
| 0.0000 | 1 | 0.4689 | - |
|
363 |
+
| 0.0019 | 50 | 0.4588 | - |
|
364 |
+
| 0.0039 | 100 | 0.3724 | - |
|
365 |
+
| 0.0058 | 150 | 0.3633 | - |
|
366 |
+
| 0.0078 | 200 | 0.2659 | - |
|
367 |
+
| 0.0097 | 250 | 0.2067 | - |
|
368 |
+
| 0.0117 | 300 | 0.2045 | - |
|
369 |
+
| 0.0136 | 350 | 0.2199 | - |
|
370 |
+
| 0.0155 | 400 | 0.1913 | - |
|
371 |
+
| 0.0175 | 450 | 0.1658 | - |
|
372 |
+
| 0.0194 | 500 | 0.2027 | - |
|
373 |
+
| 0.0214 | 550 | 0.1458 | - |
|
374 |
+
| 0.0233 | 600 | 0.16 | - |
|
375 |
+
| 0.0252 | 650 | 0.1645 | - |
|
376 |
+
| 0.0272 | 700 | 0.1411 | - |
|
377 |
+
| 0.0291 | 750 | 0.1474 | - |
|
378 |
+
| 0.0311 | 800 | 0.1301 | - |
|
379 |
+
| 0.0330 | 850 | 0.128 | - |
|
380 |
+
| 0.0350 | 900 | 0.1542 | - |
|
381 |
+
| 0.0369 | 950 | 0.0938 | - |
|
382 |
+
| 0.0388 | 1000 | 0.1306 | - |
|
383 |
+
| 0.0408 | 1050 | 0.1405 | - |
|
384 |
+
| 0.0427 | 1100 | 0.1525 | - |
|
385 |
+
| 0.0447 | 1150 | 0.1516 | - |
|
386 |
+
| 0.0466 | 1200 | 0.1016 | - |
|
387 |
+
| 0.0485 | 1250 | 0.1154 | - |
|
388 |
+
| 0.0505 | 1300 | 0.1308 | - |
|
389 |
+
| 0.0524 | 1350 | 0.0993 | - |
|
390 |
+
| 0.0544 | 1400 | 0.1055 | - |
|
391 |
+
| 0.0563 | 1450 | 0.1554 | - |
|
392 |
+
| 0.0583 | 1500 | 0.1418 | - |
|
393 |
+
| 0.0602 | 1550 | 0.0997 | - |
|
394 |
+
| 0.0621 | 1600 | 0.1023 | - |
|
395 |
+
| 0.0641 | 1650 | 0.1383 | - |
|
396 |
+
| 0.0660 | 1700 | 0.0902 | - |
|
397 |
+
| 0.0680 | 1750 | 0.103 | - |
|
398 |
+
| 0.0699 | 1800 | 0.1281 | - |
|
399 |
+
| 0.0718 | 1850 | 0.1273 | - |
|
400 |
+
| 0.0738 | 1900 | 0.1669 | - |
|
401 |
+
| 0.0757 | 1950 | 0.0752 | - |
|
402 |
+
| 0.0777 | 2000 | 0.0795 | - |
|
403 |
+
| 0.0796 | 2050 | 0.129 | - |
|
404 |
+
| 0.0816 | 2100 | 0.0763 | - |
|
405 |
+
| 0.0835 | 2150 | 0.0828 | - |
|
406 |
+
| 0.0854 | 2200 | 0.0901 | - |
|
407 |
+
| 0.0874 | 2250 | 0.0707 | - |
|
408 |
+
| 0.0893 | 2300 | 0.114 | - |
|
409 |
+
| 0.0913 | 2350 | 0.1165 | - |
|
410 |
+
| 0.0932 | 2400 | 0.1286 | - |
|
411 |
+
| 0.0951 | 2450 | 0.0719 | - |
|
412 |
+
| 0.0971 | 2500 | 0.0562 | - |
|
413 |
+
| 0.0990 | 2550 | 0.123 | - |
|
414 |
+
| 0.1010 | 2600 | 0.0717 | - |
|
415 |
+
| 0.1029 | 2650 | 0.0918 | - |
|
416 |
+
| 0.1049 | 2700 | 0.0756 | - |
|
417 |
+
| 0.1068 | 2750 | 0.0814 | - |
|
418 |
+
| 0.1087 | 2800 | 0.0788 | - |
|
419 |
+
| 0.1107 | 2850 | 0.1019 | - |
|
420 |
+
| 0.1126 | 2900 | 0.1256 | - |
|
421 |
+
| 0.1146 | 2950 | 0.0591 | - |
|
422 |
+
| 0.1165 | 3000 | 0.1196 | - |
|
423 |
+
| 0.1184 | 3050 | 0.0924 | - |
|
424 |
+
| 0.1204 | 3100 | 0.1239 | - |
|
425 |
+
| 0.1223 | 3150 | 0.092 | - |
|
426 |
+
| 0.1243 | 3200 | 0.091 | - |
|
427 |
+
| 0.1262 | 3250 | 0.096 | - |
|
428 |
+
| 0.1282 | 3300 | 0.0944 | - |
|
429 |
+
| 0.1301 | 3350 | 0.0664 | - |
|
430 |
+
| 0.1320 | 3400 | 0.1103 | - |
|
431 |
+
| 0.1340 | 3450 | 0.0584 | - |
|
432 |
+
| 0.1359 | 3500 | 0.0851 | - |
|
433 |
+
| 0.1379 | 3550 | 0.0858 | - |
|
434 |
+
| 0.1398 | 3600 | 0.0886 | - |
|
435 |
+
| 0.1417 | 3650 | 0.1044 | - |
|
436 |
+
| 0.1437 | 3700 | 0.0833 | - |
|
437 |
+
| 0.1456 | 3750 | 0.0582 | - |
|
438 |
+
| 0.1476 | 3800 | 0.0647 | - |
|
439 |
+
| 0.1495 | 3850 | 0.0823 | - |
|
440 |
+
| 0.1515 | 3900 | 0.1256 | - |
|
441 |
+
| 0.1534 | 3950 | 0.0747 | - |
|
442 |
+
| 0.1553 | 4000 | 0.0554 | - |
|
443 |
+
| 0.1573 | 4050 | 0.0969 | - |
|
444 |
+
| 0.1592 | 4100 | 0.0941 | - |
|
445 |
+
| 0.1612 | 4150 | 0.0647 | - |
|
446 |
+
| 0.1631 | 4200 | 0.1008 | - |
|
447 |
+
| 0.1650 | 4250 | 0.0699 | - |
|
448 |
+
| 0.1670 | 4300 | 0.0746 | - |
|
449 |
+
| 0.1689 | 4350 | 0.076 | - |
|
450 |
+
| 0.1709 | 4400 | 0.1026 | - |
|
451 |
+
| 0.1728 | 4450 | 0.0748 | - |
|
452 |
+
| 0.1748 | 4500 | 0.0689 | - |
|
453 |
+
| 0.1767 | 4550 | 0.0675 | - |
|
454 |
+
| 0.1786 | 4600 | 0.0788 | - |
|
455 |
+
| 0.1806 | 4650 | 0.0775 | - |
|
456 |
+
| 0.1825 | 4700 | 0.1021 | - |
|
457 |
+
| 0.1845 | 4750 | 0.0729 | - |
|
458 |
+
| 0.1864 | 4800 | 0.0741 | - |
|
459 |
+
| 0.1883 | 4850 | 0.0494 | - |
|
460 |
+
| 0.1903 | 4900 | 0.0845 | - |
|
461 |
+
| 0.1922 | 4950 | 0.0609 | - |
|
462 |
+
| 0.1942 | 5000 | 0.0548 | - |
|
463 |
+
| 0.1961 | 5050 | 0.0733 | - |
|
464 |
+
| 0.1981 | 5100 | 0.079 | - |
|
465 |
+
| 0.2 | 5150 | 0.0363 | - |
|
466 |
+
| 0.2019 | 5200 | 0.0797 | - |
|
467 |
+
| 0.2039 | 5250 | 0.0754 | - |
|
468 |
+
| 0.2058 | 5300 | 0.0446 | - |
|
469 |
+
| 0.2078 | 5350 | 0.0524 | - |
|
470 |
+
| 0.2097 | 5400 | 0.0715 | - |
|
471 |
+
| 0.2117 | 5450 | 0.0678 | - |
|
472 |
+
| 0.2136 | 5500 | 0.0628 | - |
|
473 |
+
| 0.2155 | 5550 | 0.0554 | - |
|
474 |
+
| 0.2175 | 5600 | 0.0549 | - |
|
475 |
+
| 0.2194 | 5650 | 0.0775 | - |
|
476 |
+
| 0.2214 | 5700 | 0.0558 | - |
|
477 |
+
| 0.2233 | 5750 | 0.0616 | - |
|
478 |
+
| 0.2252 | 5800 | 0.0455 | - |
|
479 |
+
| 0.2272 | 5850 | 0.0538 | - |
|
480 |
+
| 0.2291 | 5900 | 0.0563 | - |
|
481 |
+
| 0.2311 | 5950 | 0.0593 | - |
|
482 |
+
| 0.2330 | 6000 | 0.0688 | - |
|
483 |
+
| 0.2350 | 6050 | 0.0746 | - |
|
484 |
+
| 0.2369 | 6100 | 0.0705 | - |
|
485 |
+
| 0.2388 | 6150 | 0.0517 | - |
|
486 |
+
| 0.2408 | 6200 | 0.0695 | - |
|
487 |
+
| 0.2427 | 6250 | 0.0436 | - |
|
488 |
+
| 0.2447 | 6300 | 0.0409 | - |
|
489 |
+
| 0.2466 | 6350 | 0.0431 | - |
|
490 |
+
| 0.2485 | 6400 | 0.07 | - |
|
491 |
+
| 0.2505 | 6450 | 0.0238 | - |
|
492 |
+
| 0.2524 | 6500 | 0.0825 | - |
|
493 |
+
| 0.2544 | 6550 | 0.0694 | - |
|
494 |
+
| 0.2563 | 6600 | 0.0878 | - |
|
495 |
+
| 0.2583 | 6650 | 0.0462 | - |
|
496 |
+
| 0.2602 | 6700 | 0.0497 | - |
|
497 |
+
| 0.2621 | 6750 | 0.0633 | - |
|
498 |
+
| 0.2641 | 6800 | 0.0653 | - |
|
499 |
+
| 0.2660 | 6850 | 0.0565 | - |
|
500 |
+
| 0.2680 | 6900 | 0.0665 | - |
|
501 |
+
| 0.2699 | 6950 | 0.0842 | - |
|
502 |
+
| 0.2718 | 7000 | 0.0772 | - |
|
503 |
+
| 0.2738 | 7050 | 0.0684 | - |
|
504 |
+
| 0.2757 | 7100 | 0.0723 | - |
|
505 |
+
| 0.2777 | 7150 | 0.0487 | - |
|
506 |
+
| 0.2796 | 7200 | 0.0771 | - |
|
507 |
+
| 0.2816 | 7250 | 0.0397 | - |
|
508 |
+
| 0.2835 | 7300 | 0.0567 | - |
|
509 |
+
| 0.2854 | 7350 | 0.0304 | - |
|
510 |
+
| 0.2874 | 7400 | 0.0421 | - |
|
511 |
+
| 0.2893 | 7450 | 0.0632 | - |
|
512 |
+
| 0.2913 | 7500 | 0.0346 | - |
|
513 |
+
| 0.2932 | 7550 | 0.0255 | - |
|
514 |
+
| 0.2951 | 7600 | 0.0589 | - |
|
515 |
+
| 0.2971 | 7650 | 0.0586 | - |
|
516 |
+
| 0.2990 | 7700 | 0.0617 | - |
|
517 |
+
| 0.3010 | 7750 | 0.0576 | - |
|
518 |
+
| 0.3029 | 7800 | 0.0527 | - |
|
519 |
+
| 0.3049 | 7850 | 0.032 | - |
|
520 |
+
| 0.3068 | 7900 | 0.0315 | - |
|
521 |
+
| 0.3087 | 7950 | 0.038 | - |
|
522 |
+
| 0.3107 | 8000 | 0.0475 | - |
|
523 |
+
| 0.3126 | 8050 | 0.0408 | - |
|
524 |
+
| 0.3146 | 8100 | 0.0457 | - |
|
525 |
+
| 0.3165 | 8150 | 0.0867 | - |
|
526 |
+
| 0.3184 | 8200 | 0.0407 | - |
|
527 |
+
| 0.3204 | 8250 | 0.065 | - |
|
528 |
+
| 0.3223 | 8300 | 0.0547 | - |
|
529 |
+
| 0.3243 | 8350 | 0.0793 | - |
|
530 |
+
| 0.3262 | 8400 | 0.0461 | - |
|
531 |
+
| 0.3282 | 8450 | 0.0808 | - |
|
532 |
+
| 0.3301 | 8500 | 0.0523 | - |
|
533 |
+
| 0.3320 | 8550 | 0.0549 | - |
|
534 |
+
| 0.3340 | 8600 | 0.0607 | - |
|
535 |
+
| 0.3359 | 8650 | 0.0398 | - |
|
536 |
+
| 0.3379 | 8700 | 0.0354 | - |
|
537 |
+
| 0.3398 | 8750 | 0.0865 | - |
|
538 |
+
| 0.3417 | 8800 | 0.0493 | - |
|
539 |
+
| 0.3437 | 8850 | 0.0178 | - |
|
540 |
+
| 0.3456 | 8900 | 0.029 | - |
|
541 |
+
| 0.3476 | 8950 | 0.0402 | - |
|
542 |
+
| 0.3495 | 9000 | 0.0475 | - |
|
543 |
+
| 0.3515 | 9050 | 0.0587 | - |
|
544 |
+
| 0.3534 | 9100 | 0.0591 | - |
|
545 |
+
| 0.3553 | 9150 | 0.0574 | - |
|
546 |
+
| 0.3573 | 9200 | 0.0382 | - |
|
547 |
+
| 0.3592 | 9250 | 0.0358 | - |
|
548 |
+
| 0.3612 | 9300 | 0.032 | - |
|
549 |
+
| 0.3631 | 9350 | 0.0264 | - |
|
550 |
+
| 0.3650 | 9400 | 0.0365 | - |
|
551 |
+
| 0.3670 | 9450 | 0.0366 | - |
|
552 |
+
| 0.3689 | 9500 | 0.0752 | - |
|
553 |
+
| 0.3709 | 9550 | 0.06 | - |
|
554 |
+
| 0.3728 | 9600 | 0.0423 | - |
|
555 |
+
| 0.3748 | 9650 | 0.0388 | - |
|
556 |
+
| 0.3767 | 9700 | 0.0356 | - |
|
557 |
+
| 0.3786 | 9750 | 0.0426 | - |
|
558 |
+
| 0.3806 | 9800 | 0.0404 | - |
|
559 |
+
| 0.3825 | 9850 | 0.0546 | - |
|
560 |
+
| 0.3845 | 9900 | 0.0647 | - |
|
561 |
+
| 0.3864 | 9950 | 0.0335 | - |
|
562 |
+
| 0.3883 | 10000 | 0.0255 | - |
|
563 |
+
| 0.3903 | 10050 | 0.0561 | - |
|
564 |
+
| 0.3922 | 10100 | 0.0221 | - |
|
565 |
+
| 0.3942 | 10150 | 0.0461 | - |
|
566 |
+
| 0.3961 | 10200 | 0.0203 | - |
|
567 |
+
| 0.3981 | 10250 | 0.0484 | - |
|
568 |
+
| 0.4 | 10300 | 0.0429 | - |
|
569 |
+
| 0.4019 | 10350 | 0.0327 | - |
|
570 |
+
| 0.4039 | 10400 | 0.035 | - |
|
571 |
+
| 0.4058 | 10450 | 0.0517 | - |
|
572 |
+
| 0.4078 | 10500 | 0.0209 | - |
|
573 |
+
| 0.4097 | 10550 | 0.0462 | - |
|
574 |
+
| 0.4117 | 10600 | 0.0496 | - |
|
575 |
+
| 0.4136 | 10650 | 0.0135 | - |
|
576 |
+
| 0.4155 | 10700 | 0.0246 | - |
|
577 |
+
| 0.4175 | 10750 | 0.0462 | - |
|
578 |
+
| 0.4194 | 10800 | 0.0334 | - |
|
579 |
+
| 0.4214 | 10850 | 0.0245 | - |
|
580 |
+
| 0.4233 | 10900 | 0.0514 | - |
|
581 |
+
| 0.4252 | 10950 | 0.042 | - |
|
582 |
+
| 0.4272 | 11000 | 0.0395 | - |
|
583 |
+
| 0.4291 | 11050 | 0.0562 | - |
|
584 |
+
| 0.4311 | 11100 | 0.0266 | - |
|
585 |
+
| 0.4330 | 11150 | 0.0485 | - |
|
586 |
+
| 0.4350 | 11200 | 0.0215 | - |
|
587 |
+
| 0.4369 | 11250 | 0.0603 | - |
|
588 |
+
| 0.4388 | 11300 | 0.0285 | - |
|
589 |
+
| 0.4408 | 11350 | 0.0226 | - |
|
590 |
+
| 0.4427 | 11400 | 0.0454 | - |
|
591 |
+
| 0.4447 | 11450 | 0.0375 | - |
|
592 |
+
| 0.4466 | 11500 | 0.0297 | - |
|
593 |
+
| 0.4485 | 11550 | 0.027 | - |
|
594 |
+
| 0.4505 | 11600 | 0.0316 | - |
|
595 |
+
| 0.4524 | 11650 | 0.0361 | - |
|
596 |
+
| 0.4544 | 11700 | 0.0201 | - |
|
597 |
+
| 0.4563 | 11750 | 0.0457 | - |
|
598 |
+
| 0.4583 | 11800 | 0.0328 | - |
|
599 |
+
| 0.4602 | 11850 | 0.0225 | - |
|
600 |
+
| 0.4621 | 11900 | 0.0233 | - |
|
601 |
+
| 0.4641 | 11950 | 0.0212 | - |
|
602 |
+
| 0.4660 | 12000 | 0.0447 | - |
|
603 |
+
| 0.4680 | 12050 | 0.0288 | - |
|
604 |
+
| 0.4699 | 12100 | 0.0185 | - |
|
605 |
+
| 0.4718 | 12150 | 0.029 | - |
|
606 |
+
| 0.4738 | 12200 | 0.0261 | - |
|
607 |
+
| 0.4757 | 12250 | 0.0375 | - |
|
608 |
+
| 0.4777 | 12300 | 0.0366 | - |
|
609 |
+
| 0.4796 | 12350 | 0.026 | - |
|
610 |
+
| 0.4816 | 12400 | 0.0491 | - |
|
611 |
+
| 0.4835 | 12450 | 0.0407 | - |
|
612 |
+
| 0.4854 | 12500 | 0.0168 | - |
|
613 |
+
| 0.4874 | 12550 | 0.0619 | - |
|
614 |
+
| 0.4893 | 12600 | 0.0179 | - |
|
615 |
+
| 0.4913 | 12650 | 0.022 | - |
|
616 |
+
| 0.4932 | 12700 | 0.0331 | - |
|
617 |
+
| 0.4951 | 12750 | 0.0272 | - |
|
618 |
+
| 0.4971 | 12800 | 0.049 | - |
|
619 |
+
| 0.4990 | 12850 | 0.0177 | - |
|
620 |
+
| 0.5010 | 12900 | 0.0484 | - |
|
621 |
+
| 0.5029 | 12950 | 0.0164 | - |
|
622 |
+
| 0.5049 | 13000 | 0.0323 | - |
|
623 |
+
| 0.5068 | 13050 | 0.0213 | - |
|
624 |
+
| 0.5087 | 13100 | 0.0299 | - |
|
625 |
+
| 0.5107 | 13150 | 0.0394 | - |
|
626 |
+
| 0.5126 | 13200 | 0.0759 | - |
|
627 |
+
| 0.5146 | 13250 | 0.0187 | - |
|
628 |
+
| 0.5165 | 13300 | 0.0392 | - |
|
629 |
+
| 0.5184 | 13350 | 0.0361 | - |
|
630 |
+
| 0.5204 | 13400 | 0.0598 | - |
|
631 |
+
| 0.5223 | 13450 | 0.0317 | - |
|
632 |
+
| 0.5243 | 13500 | 0.0343 | - |
|
633 |
+
| 0.5262 | 13550 | 0.0493 | - |
|
634 |
+
| 0.5282 | 13600 | 0.0166 | - |
|
635 |
+
| 0.5301 | 13650 | 0.0454 | - |
|
636 |
+
| 0.5320 | 13700 | 0.0211 | - |
|
637 |
+
| 0.5340 | 13750 | 0.0358 | - |
|
638 |
+
| 0.5359 | 13800 | 0.0416 | - |
|
639 |
+
| 0.5379 | 13850 | 0.0144 | - |
|
640 |
+
| 0.5398 | 13900 | 0.0747 | - |
|
641 |
+
| 0.5417 | 13950 | 0.0186 | - |
|
642 |
+
| 0.5437 | 14000 | 0.0409 | - |
|
643 |
+
| 0.5456 | 14050 | 0.0415 | - |
|
644 |
+
| 0.5476 | 14100 | 0.0057 | - |
|
645 |
+
| 0.5495 | 14150 | 0.0344 | - |
|
646 |
+
| 0.5515 | 14200 | 0.0111 | - |
|
647 |
+
| 0.5534 | 14250 | 0.0322 | - |
|
648 |
+
| 0.5553 | 14300 | 0.0303 | - |
|
649 |
+
| 0.5573 | 14350 | 0.0162 | - |
|
650 |
+
| 0.5592 | 14400 | 0.0304 | - |
|
651 |
+
| 0.5612 | 14450 | 0.049 | - |
|
652 |
+
| 0.5631 | 14500 | 0.0396 | - |
|
653 |
+
| 0.5650 | 14550 | 0.0213 | - |
|
654 |
+
| 0.5670 | 14600 | 0.0157 | - |
|
655 |
+
| 0.5689 | 14650 | 0.0315 | - |
|
656 |
+
| 0.5709 | 14700 | 0.0327 | - |
|
657 |
+
| 0.5728 | 14750 | 0.0303 | - |
|
658 |
+
| 0.5748 | 14800 | 0.0253 | - |
|
659 |
+
| 0.5767 | 14850 | 0.0562 | - |
|
660 |
+
| 0.5786 | 14900 | 0.029 | - |
|
661 |
+
| 0.5806 | 14950 | 0.0177 | - |
|
662 |
+
| 0.5825 | 15000 | 0.0283 | - |
|
663 |
+
| 0.5845 | 15050 | 0.0235 | - |
|
664 |
+
| 0.5864 | 15100 | 0.0194 | - |
|
665 |
+
| 0.5883 | 15150 | 0.0139 | - |
|
666 |
+
| 0.5903 | 15200 | 0.0356 | - |
|
667 |
+
| 0.5922 | 15250 | 0.0339 | - |
|
668 |
+
| 0.5942 | 15300 | 0.0508 | - |
|
669 |
+
| 0.5961 | 15350 | 0.0624 | - |
|
670 |
+
| 0.5981 | 15400 | 0.021 | - |
|
671 |
+
| 0.6 | 15450 | 0.0314 | - |
|
672 |
+
| 0.6019 | 15500 | 0.019 | - |
|
673 |
+
| 0.6039 | 15550 | 0.0105 | - |
|
674 |
+
| 0.6058 | 15600 | 0.0341 | - |
|
675 |
+
| 0.6078 | 15650 | 0.0189 | - |
|
676 |
+
| 0.6097 | 15700 | 0.0414 | - |
|
677 |
+
| 0.6117 | 15750 | 0.0325 | - |
|
678 |
+
| 0.6136 | 15800 | 0.0243 | - |
|
679 |
+
| 0.6155 | 15850 | 0.0277 | - |
|
680 |
+
| 0.6175 | 15900 | 0.0306 | - |
|
681 |
+
| 0.6194 | 15950 | 0.019 | - |
|
682 |
+
| 0.6214 | 16000 | 0.0265 | - |
|
683 |
+
| 0.6233 | 16050 | 0.0312 | - |
|
684 |
+
| 0.6252 | 16100 | 0.0259 | - |
|
685 |
+
| 0.6272 | 16150 | 0.0254 | - |
|
686 |
+
| 0.6291 | 16200 | 0.0375 | - |
|
687 |
+
| 0.6311 | 16250 | 0.0288 | - |
|
688 |
+
| 0.6330 | 16300 | 0.0204 | - |
|
689 |
+
| 0.6350 | 16350 | 0.0257 | - |
|
690 |
+
| 0.6369 | 16400 | 0.0391 | - |
|
691 |
+
| 0.6388 | 16450 | 0.0054 | - |
|
692 |
+
| 0.6408 | 16500 | 0.0388 | - |
|
693 |
+
| 0.6427 | 16550 | 0.0302 | - |
|
694 |
+
| 0.6447 | 16600 | 0.0038 | - |
|
695 |
+
| 0.6466 | 16650 | 0.0427 | - |
|
696 |
+
| 0.6485 | 16700 | 0.0362 | - |
|
697 |
+
| 0.6505 | 16750 | 0.0583 | - |
|
698 |
+
| 0.6524 | 16800 | 0.022 | - |
|
699 |
+
| 0.6544 | 16850 | 0.007 | - |
|
700 |
+
| 0.6563 | 16900 | 0.0469 | - |
|
701 |
+
| 0.6583 | 16950 | 0.0334 | - |
|
702 |
+
| 0.6602 | 17000 | 0.0543 | - |
|
703 |
+
| 0.6621 | 17050 | 0.0373 | - |
|
704 |
+
| 0.6641 | 17100 | 0.0094 | - |
|
705 |
+
| 0.6660 | 17150 | 0.0206 | - |
|
706 |
+
| 0.6680 | 17200 | 0.0353 | - |
|
707 |
+
| 0.6699 | 17250 | 0.0223 | - |
|
708 |
+
| 0.6718 | 17300 | 0.0497 | - |
|
709 |
+
| 0.6738 | 17350 | 0.0368 | - |
|
710 |
+
| 0.6757 | 17400 | 0.0102 | - |
|
711 |
+
| 0.6777 | 17450 | 0.0406 | - |
|
712 |
+
| 0.6796 | 17500 | 0.0596 | - |
|
713 |
+
| 0.6816 | 17550 | 0.0323 | - |
|
714 |
+
| 0.6835 | 17600 | 0.0434 | - |
|
715 |
+
| 0.6854 | 17650 | 0.0248 | - |
|
716 |
+
| 0.6874 | 17700 | 0.0674 | - |
|
717 |
+
| 0.6893 | 17750 | 0.0051 | - |
|
718 |
+
| 0.6913 | 17800 | 0.008 | - |
|
719 |
+
| 0.6932 | 17850 | 0.0379 | - |
|
720 |
+
| 0.6951 | 17900 | 0.0448 | - |
|
721 |
+
| 0.6971 | 17950 | 0.0423 | - |
|
722 |
+
| 0.6990 | 18000 | 0.0357 | - |
|
723 |
+
| 0.7010 | 18050 | 0.0322 | - |
|
724 |
+
| 0.7029 | 18100 | 0.0303 | - |
|
725 |
+
| 0.7049 | 18150 | 0.0351 | - |
|
726 |
+
| 0.7068 | 18200 | 0.0175 | - |
|
727 |
+
| 0.7087 | 18250 | 0.0065 | - |
|
728 |
+
| 0.7107 | 18300 | 0.0359 | - |
|
729 |
+
| 0.7126 | 18350 | 0.0316 | - |
|
730 |
+
| 0.7146 | 18400 | 0.0326 | - |
|
731 |
+
| 0.7165 | 18450 | 0.0095 | - |
|
732 |
+
| 0.7184 | 18500 | 0.0087 | - |
|
733 |
+
| 0.7204 | 18550 | 0.0491 | - |
|
734 |
+
| 0.7223 | 18600 | 0.0285 | - |
|
735 |
+
| 0.7243 | 18650 | 0.0544 | - |
|
736 |
+
| 0.7262 | 18700 | 0.0462 | - |
|
737 |
+
| 0.7282 | 18750 | 0.0276 | - |
|
738 |
+
| 0.7301 | 18800 | 0.0441 | - |
|
739 |
+
| 0.7320 | 18850 | 0.0329 | - |
|
740 |
+
| 0.7340 | 18900 | 0.0686 | - |
|
741 |
+
| 0.7359 | 18950 | 0.0184 | - |
|
742 |
+
| 0.7379 | 19000 | 0.0258 | - |
|
743 |
+
| 0.7398 | 19050 | 0.0055 | - |
|
744 |
+
| 0.7417 | 19100 | 0.0144 | - |
|
745 |
+
| 0.7437 | 19150 | 0.0286 | - |
|
746 |
+
| 0.7456 | 19200 | 0.0132 | - |
|
747 |
+
| 0.7476 | 19250 | 0.0326 | - |
|
748 |
+
| 0.7495 | 19300 | 0.0136 | - |
|
749 |
+
| 0.7515 | 19350 | 0.0299 | - |
|
750 |
+
| 0.7534 | 19400 | 0.0189 | - |
|
751 |
+
| 0.7553 | 19450 | 0.0112 | - |
|
752 |
+
| 0.7573 | 19500 | 0.0566 | - |
|
753 |
+
| 0.7592 | 19550 | 0.0361 | - |
|
754 |
+
| 0.7612 | 19600 | 0.0043 | - |
|
755 |
+
| 0.7631 | 19650 | 0.0455 | - |
|
756 |
+
| 0.7650 | 19700 | 0.0313 | - |
|
757 |
+
| 0.7670 | 19750 | 0.0232 | - |
|
758 |
+
| 0.7689 | 19800 | 0.0235 | - |
|
759 |
+
| 0.7709 | 19850 | 0.0523 | - |
|
760 |
+
| 0.7728 | 19900 | 0.021 | - |
|
761 |
+
| 0.7748 | 19950 | 0.0061 | - |
|
762 |
+
| 0.7767 | 20000 | 0.0292 | - |
|
763 |
+
| 0.7786 | 20050 | 0.0259 | - |
|
764 |
+
| 0.7806 | 20100 | 0.0621 | - |
|
765 |
+
| 0.7825 | 20150 | 0.0367 | - |
|
766 |
+
| 0.7845 | 20200 | 0.0052 | - |
|
767 |
+
| 0.7864 | 20250 | 0.0318 | - |
|
768 |
+
| 0.7883 | 20300 | 0.0053 | - |
|
769 |
+
| 0.7903 | 20350 | 0.019 | - |
|
770 |
+
| 0.7922 | 20400 | 0.0233 | - |
|
771 |
+
| 0.7942 | 20450 | 0.0473 | - |
|
772 |
+
| 0.7961 | 20500 | 0.0058 | - |
|
773 |
+
| 0.7981 | 20550 | 0.0189 | - |
|
774 |
+
| 0.8 | 20600 | 0.0348 | - |
|
775 |
+
| 0.8019 | 20650 | 0.0361 | - |
|
776 |
+
| 0.8039 | 20700 | 0.0205 | - |
|
777 |
+
| 0.8058 | 20750 | 0.0195 | - |
|
778 |
+
| 0.8078 | 20800 | 0.0551 | - |
|
779 |
+
| 0.8097 | 20850 | 0.0178 | - |
|
780 |
+
| 0.8117 | 20900 | 0.0209 | - |
|
781 |
+
| 0.8136 | 20950 | 0.0412 | - |
|
782 |
+
| 0.8155 | 21000 | 0.0352 | - |
|
783 |
+
| 0.8175 | 21050 | 0.0258 | - |
|
784 |
+
| 0.8194 | 21100 | 0.0279 | - |
|
785 |
+
| 0.8214 | 21150 | 0.0143 | - |
|
786 |
+
| 0.8233 | 21200 | 0.0201 | - |
|
787 |
+
| 0.8252 | 21250 | 0.0139 | - |
|
788 |
+
| 0.8272 | 21300 | 0.028 | - |
|
789 |
+
| 0.8291 | 21350 | 0.0078 | - |
|
790 |
+
| 0.8311 | 21400 | 0.0191 | - |
|
791 |
+
| 0.8330 | 21450 | 0.0217 | - |
|
792 |
+
| 0.8350 | 21500 | 0.0384 | - |
|
793 |
+
| 0.8369 | 21550 | 0.0116 | - |
|
794 |
+
| 0.8388 | 21600 | 0.0268 | - |
|
795 |
+
| 0.8408 | 21650 | 0.0225 | - |
|
796 |
+
| 0.8427 | 21700 | 0.0085 | - |
|
797 |
+
| 0.8447 | 21750 | 0.0046 | - |
|
798 |
+
| 0.8466 | 21800 | 0.0235 | - |
|
799 |
+
| 0.8485 | 21850 | 0.0351 | - |
|
800 |
+
| 0.8505 | 21900 | 0.0274 | - |
|
801 |
+
| 0.8524 | 21950 | 0.0201 | - |
|
802 |
+
| 0.8544 | 22000 | 0.0378 | - |
|
803 |
+
| 0.8563 | 22050 | 0.0396 | - |
|
804 |
+
| 0.8583 | 22100 | 0.0454 | - |
|
805 |
+
| 0.8602 | 22150 | 0.0235 | - |
|
806 |
+
| 0.8621 | 22200 | 0.0176 | - |
|
807 |
+
| 0.8641 | 22250 | 0.0281 | - |
|
808 |
+
| 0.8660 | 22300 | 0.0142 | - |
|
809 |
+
| 0.8680 | 22350 | 0.02 | - |
|
810 |
+
| 0.8699 | 22400 | 0.0361 | - |
|
811 |
+
| 0.8718 | 22450 | 0.0189 | - |
|
812 |
+
| 0.8738 | 22500 | 0.046 | - |
|
813 |
+
| 0.8757 | 22550 | 0.0321 | - |
|
814 |
+
| 0.8777 | 22600 | 0.0238 | - |
|
815 |
+
| 0.8796 | 22650 | 0.0246 | - |
|
816 |
+
| 0.8816 | 22700 | 0.0297 | - |
|
817 |
+
| 0.8835 | 22750 | 0.0034 | - |
|
818 |
+
| 0.8854 | 22800 | 0.0335 | - |
|
819 |
+
| 0.8874 | 22850 | 0.0511 | - |
|
820 |
+
| 0.8893 | 22900 | 0.0182 | - |
|
821 |
+
| 0.8913 | 22950 | 0.0214 | - |
|
822 |
+
| 0.8932 | 23000 | 0.0516 | - |
|
823 |
+
| 0.8951 | 23050 | 0.0217 | - |
|
824 |
+
| 0.8971 | 23100 | 0.0128 | - |
|
825 |
+
| 0.8990 | 23150 | 0.0202 | - |
|
826 |
+
| 0.9010 | 23200 | 0.0404 | - |
|
827 |
+
| 0.9029 | 23250 | 0.0162 | - |
|
828 |
+
| 0.9049 | 23300 | 0.0282 | - |
|
829 |
+
| 0.9068 | 23350 | 0.0058 | - |
|
830 |
+
| 0.9087 | 23400 | 0.0326 | - |
|
831 |
+
| 0.9107 | 23450 | 0.0057 | - |
|
832 |
+
| 0.9126 | 23500 | 0.0424 | - |
|
833 |
+
| 0.9146 | 23550 | 0.007 | - |
|
834 |
+
| 0.9165 | 23600 | 0.0217 | - |
|
835 |
+
| 0.9184 | 23650 | 0.0194 | - |
|
836 |
+
| 0.9204 | 23700 | 0.0151 | - |
|
837 |
+
| 0.9223 | 23750 | 0.0325 | - |
|
838 |
+
| 0.9243 | 23800 | 0.0308 | - |
|
839 |
+
| 0.9262 | 23850 | 0.0467 | - |
|
840 |
+
| 0.9282 | 23900 | 0.016 | - |
|
841 |
+
| 0.9301 | 23950 | 0.018 | - |
|
842 |
+
| 0.9320 | 24000 | 0.0369 | - |
|
843 |
+
| 0.9340 | 24050 | 0.0329 | - |
|
844 |
+
| 0.9359 | 24100 | 0.006 | - |
|
845 |
+
| 0.9379 | 24150 | 0.0356 | - |
|
846 |
+
| 0.9398 | 24200 | 0.0053 | - |
|
847 |
+
| 0.9417 | 24250 | 0.0169 | - |
|
848 |
+
| 0.9437 | 24300 | 0.0311 | - |
|
849 |
+
| 0.9456 | 24350 | 0.0045 | - |
|
850 |
+
| 0.9476 | 24400 | 0.0184 | - |
|
851 |
+
| 0.9495 | 24450 | 0.0064 | - |
|
852 |
+
| 0.9515 | 24500 | 0.0722 | - |
|
853 |
+
| 0.9534 | 24550 | 0.0201 | - |
|
854 |
+
| 0.9553 | 24600 | 0.0219 | - |
|
855 |
+
| 0.9573 | 24650 | 0.0286 | - |
|
856 |
+
| 0.9592 | 24700 | 0.005 | - |
|
857 |
+
| 0.9612 | 24750 | 0.0184 | - |
|
858 |
+
| 0.9631 | 24800 | 0.0188 | - |
|
859 |
+
| 0.9650 | 24850 | 0.027 | - |
|
860 |
+
| 0.9670 | 24900 | 0.0325 | - |
|
861 |
+
| 0.9689 | 24950 | 0.0057 | - |
|
862 |
+
| 0.9709 | 25000 | 0.0046 | - |
|
863 |
+
| 0.9728 | 25050 | 0.0155 | - |
|
864 |
+
| 0.9748 | 25100 | 0.0039 | - |
|
865 |
+
| 0.9767 | 25150 | 0.0436 | - |
|
866 |
+
| 0.9786 | 25200 | 0.0434 | - |
|
867 |
+
| 0.9806 | 25250 | 0.0057 | - |
|
868 |
+
| 0.9825 | 25300 | 0.0188 | - |
|
869 |
+
| 0.9845 | 25350 | 0.0069 | - |
|
870 |
+
| 0.9864 | 25400 | 0.0334 | - |
|
871 |
+
| 0.9883 | 25450 | 0.0492 | - |
|
872 |
+
| 0.9903 | 25500 | 0.0126 | - |
|
873 |
+
| 0.9922 | 25550 | 0.084 | - |
|
874 |
+
| 0.9942 | 25600 | 0.033 | - |
|
875 |
+
| 0.9961 | 25650 | 0.0323 | - |
|
876 |
+
| 0.9981 | 25700 | 0.0267 | - |
|
877 |
+
| 1.0 | 25750 | 0.0155 | - |
|
878 |
|
879 |
### Framework Versions
|
880 |
- Python: 3.10.12
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
@@ -15,12 +15,12 @@
|
|
15 |
"max_position_embeddings": 512,
|
16 |
"model_type": "bert",
|
17 |
"num_attention_heads": 12,
|
18 |
-
"num_hidden_layers":
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
"transformers_version": "4.35.2",
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
-
"vocab_size":
|
26 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
15 |
"max_position_embeddings": 512,
|
16 |
"model_type": "bert",
|
17 |
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
"transformers_version": "4.35.2",
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
}
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.0.0",
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "1.
|
6 |
}
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
}
|
7 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27bee2a300bfd6f67fe5e5cbb3bdb1e2d5a9c1342f734e7e2b3f6f615012cba6
|
3 |
+
size 90864192
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 367503
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43aac5f1526c2224c5f8f43233af4220fb4839432e363e35f7251d97ac8a4971
|
3 |
size 367503
|
modules.json
CHANGED
@@ -10,5 +10,11 @@
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
]
|
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
}
|
20 |
]
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length":
|
3 |
"do_lower_case": false
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 256,
|
3 |
"do_lower_case": false
|
4 |
}
|
special_tokens_map.json
CHANGED
@@ -1,15 +1,7 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
4 |
-
"
|
5 |
-
"
|
6 |
-
|
7 |
-
"lstrip": true,
|
8 |
-
"normalized": false,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false
|
11 |
-
},
|
12 |
-
"pad_token": "<pad>",
|
13 |
-
"sep_token": "</s>",
|
14 |
-
"unk_token": "<unk>"
|
15 |
}
|
|
|
1 |
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
tokenizer.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:851ca67100d372ca3ae031a6abd168f53489eebfd7d89523f35c5c9b4d372c3c
|
3 |
+
size 711649
|
tokenizer_config.json
CHANGED
@@ -1,64 +1,64 @@
|
|
1 |
{
|
2 |
"added_tokens_decoder": {
|
3 |
"0": {
|
4 |
-
"content": "
|
5 |
"lstrip": false,
|
6 |
"normalized": false,
|
7 |
"rstrip": false,
|
8 |
"single_word": false,
|
9 |
"special": true
|
10 |
},
|
11 |
-
"
|
12 |
-
"content": "
|
13 |
"lstrip": false,
|
14 |
"normalized": false,
|
15 |
"rstrip": false,
|
16 |
"single_word": false,
|
17 |
"special": true
|
18 |
},
|
19 |
-
"
|
20 |
-
"content": "
|
21 |
"lstrip": false,
|
22 |
"normalized": false,
|
23 |
"rstrip": false,
|
24 |
"single_word": false,
|
25 |
"special": true
|
26 |
},
|
27 |
-
"
|
28 |
-
"content": "
|
29 |
"lstrip": false,
|
30 |
"normalized": false,
|
31 |
"rstrip": false,
|
32 |
"single_word": false,
|
33 |
"special": true
|
34 |
},
|
35 |
-
"
|
36 |
-
"content": "
|
37 |
-
"lstrip":
|
38 |
"normalized": false,
|
39 |
"rstrip": false,
|
40 |
"single_word": false,
|
41 |
"special": true
|
42 |
}
|
43 |
},
|
44 |
-
"bos_token": "<s>",
|
45 |
"clean_up_tokenization_spaces": true,
|
46 |
-
"cls_token": "
|
|
|
47 |
"do_lower_case": true,
|
48 |
-
"
|
49 |
-
"mask_token": "<mask>",
|
50 |
"max_length": 128,
|
51 |
"model_max_length": 512,
|
|
|
52 |
"pad_to_multiple_of": null,
|
53 |
-
"pad_token": "
|
54 |
"pad_token_type_id": 0,
|
55 |
"padding_side": "right",
|
56 |
-
"sep_token": "
|
57 |
"stride": 0,
|
58 |
"strip_accents": null,
|
59 |
"tokenize_chinese_chars": true,
|
60 |
"tokenizer_class": "BertTokenizer",
|
61 |
"truncation_side": "right",
|
62 |
"truncation_strategy": "longest_first",
|
63 |
-
"unk_token": "
|
64 |
}
|
|
|
1 |
{
|
2 |
"added_tokens_decoder": {
|
3 |
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
"lstrip": false,
|
6 |
"normalized": false,
|
7 |
"rstrip": false,
|
8 |
"single_word": false,
|
9 |
"special": true
|
10 |
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
"lstrip": false,
|
14 |
"normalized": false,
|
15 |
"rstrip": false,
|
16 |
"single_word": false,
|
17 |
"special": true
|
18 |
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
"lstrip": false,
|
22 |
"normalized": false,
|
23 |
"rstrip": false,
|
24 |
"single_word": false,
|
25 |
"special": true
|
26 |
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
"lstrip": false,
|
30 |
"normalized": false,
|
31 |
"rstrip": false,
|
32 |
"single_word": false,
|
33 |
"special": true
|
34 |
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
"normalized": false,
|
39 |
"rstrip": false,
|
40 |
"single_word": false,
|
41 |
"special": true
|
42 |
}
|
43 |
},
|
|
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
|
|
49 |
"max_length": 128,
|
50 |
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
"pad_token_type_id": 0,
|
55 |
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
"stride": 0,
|
58 |
"strip_accents": null,
|
59 |
"tokenize_chinese_chars": true,
|
60 |
"tokenizer_class": "BertTokenizer",
|
61 |
"truncation_side": "right",
|
62 |
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|