--- tags: - llama - alpaca - qlora - unsloth - instruction-tuning - fine-tuned base_model: unsloth/llama-3-3b-bnb-4bit library_name: peft license: apache-2.0 datasets: - tatsu-lab/alpaca language: - en pipeline_tag: text-generation --- # LLaMA-3 3B Fine-tuned with QLoRA (Unsloth) on Alpaca This model is a fine-tuned version of [`unsloth/llama-3-3b-bnb-4bit`](https://huggingface.co/unsloth/llama-3-3b-bnb-4bit) using **QLoRA** and [Unsloth](https://github.com/unslothai/unsloth) for efficient instruction-tuning. ## 📖 Training Details - **Dataset**: [`tatsu-lab/alpaca`](https://huggingface.co/datasets/tatsu-lab/alpaca) - **QLoRA**: 4-bit quantization (NF4) using `bitsandbytes` - **LoRA Rank**: 4 (adjust based on your config) - **LoRA Alpha**: 8 - **Batch Size**: 2 per device - **Gradient Accumulation**: 4 - **Learning Rate**: 2e-4 - **Epochs**: 1 - **Trainer**: `trl.SFTTrainer` ## 💡 Notes - Optimized for memory-efficient fine-tuning with Unsloth - LoRA adapters are injected into Q, O, V attention projections - No evaluation was run during training — please evaluate separately ## 📝 License Apache 2.0