File size: 39,732 Bytes
1d30d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
#ifndef __CLIP_HPP__
#define __CLIP_HPP__
#include "ggml_extend.hpp"
#include "model.h"
/*================================================== CLIPTokenizer ===================================================*/
std::pair<std::unordered_map<std::string, float>, std::string> extract_and_remove_lora(std::string text) {
std::regex re("<lora:([^:]+):([^>]+)>");
std::smatch matches;
std::unordered_map<std::string, float> filename2multiplier;
while (std::regex_search(text, matches, re)) {
std::string filename = matches[1].str();
float multiplier = std::stof(matches[2].str());
text = std::regex_replace(text, re, "", std::regex_constants::format_first_only);
if (multiplier == 0.f) {
continue;
}
if (filename2multiplier.find(filename) == filename2multiplier.end()) {
filename2multiplier[filename] = multiplier;
} else {
filename2multiplier[filename] += multiplier;
}
}
return std::make_pair(filename2multiplier, text);
}
std::vector<std::pair<int, std::u32string>> bytes_to_unicode() {
std::vector<std::pair<int, std::u32string>> byte_unicode_pairs;
std::set<int> byte_set;
for (int b = static_cast<int>('!'); b <= static_cast<int>('~'); ++b) {
byte_set.insert(b);
byte_unicode_pairs.push_back(std::pair<int, std::u32string>(b, unicode_value_to_utf32(b)));
}
for (int b = 161; b <= 172; ++b) {
byte_set.insert(b);
byte_unicode_pairs.push_back(std::pair<int, std::u32string>(b, unicode_value_to_utf32(b)));
}
for (int b = 174; b <= 255; ++b) {
byte_set.insert(b);
byte_unicode_pairs.push_back(std::pair<int, std::u32string>(b, unicode_value_to_utf32(b)));
}
int n = 0;
for (int b = 0; b < 256; ++b) {
if (byte_set.find(b) == byte_set.end()) {
byte_unicode_pairs.push_back(std::pair<int, std::u32string>(b, unicode_value_to_utf32(n + 256)));
++n;
}
}
// LOG_DEBUG("byte_unicode_pairs %d", byte_unicode_pairs.size());
return byte_unicode_pairs;
}
// Ref: https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py
typedef std::function<bool(std::string&, std::vector<int32_t>&)> on_new_token_cb_t;
class CLIPTokenizer {
private:
std::map<int, std::u32string> byte_encoder;
std::map<std::u32string, int> byte_decoder;
std::map<std::u32string, int> encoder;
std::map<int, std::u32string> decoder;
std::map<std::pair<std::u32string, std::u32string>, int> bpe_ranks;
std::regex pat;
int encoder_len;
int bpe_len;
public:
const std::string UNK_TOKEN = "<|endoftext|>";
const std::string BOS_TOKEN = "<|startoftext|>";
const std::string EOS_TOKEN = "<|endoftext|>";
const std::string PAD_TOKEN = "<|endoftext|>";
const int UNK_TOKEN_ID = 49407;
const int BOS_TOKEN_ID = 49406;
const int EOS_TOKEN_ID = 49407;
const int PAD_TOKEN_ID = 49407;
private:
static std::string strip(const std::string& str) {
std::string::size_type start = str.find_first_not_of(" \t\n\r\v\f");
std::string::size_type end = str.find_last_not_of(" \t\n\r\v\f");
if (start == std::string::npos) {
// String contains only whitespace characters
return "";
}
return str.substr(start, end - start + 1);
}
static std::string whitespace_clean(std::string text) {
text = std::regex_replace(text, std::regex(R"(\s+)"), " ");
text = strip(text);
return text;
}
static std::set<std::pair<std::u32string, std::u32string>> get_pairs(const std::vector<std::u32string>& subwords) {
std::set<std::pair<std::u32string, std::u32string>> pairs;
if (subwords.size() == 0) {
return pairs;
}
std::u32string prev_subword = subwords[0];
for (int i = 1; i < subwords.size(); i++) {
std::u32string subword = subwords[i];
std::pair<std::u32string, std::u32string> pair(prev_subword, subword);
pairs.insert(pair);
prev_subword = subword;
}
return pairs;
}
public:
CLIPTokenizer(int pad_token_id = 49407, const std::string& merges_utf8_str = "")
: PAD_TOKEN_ID(pad_token_id) {
if (merges_utf8_str.size() > 0) {
load_from_merges(merges_utf8_str);
} else {
load_from_merges(ModelLoader::load_merges());
}
}
void load_from_merges(const std::string& merges_utf8_str) {
auto byte_unicode_pairs = bytes_to_unicode();
// printf("byte_unicode_pairs have %lu pairs \n", byte_unicode_pairs.size());
byte_encoder = std::map<int, std::u32string>(byte_unicode_pairs.begin(), byte_unicode_pairs.end());
for (auto& pair : byte_unicode_pairs) {
byte_decoder[pair.second] = pair.first;
}
// for (auto & pair: byte_unicode_pairs) {
// std::cout << pair.first << ": " << pair.second << std::endl;
// }
std::vector<std::u32string> merges;
size_t start = 0;
size_t pos;
std::u32string merges_utf32_str = utf8_to_utf32(merges_utf8_str);
while ((pos = merges_utf32_str.find('\n', start)) != std::string::npos) {
merges.push_back(merges_utf32_str.substr(start, pos - start));
start = pos + 1;
}
// LOG_DEBUG("merges size %llu", merges.size());
GGML_ASSERT(merges.size() == 48895);
merges = std::vector<std::u32string>(merges.begin() + 1, merges.end());
std::vector<std::pair<std::u32string, std::u32string>> merge_pairs;
for (const auto& merge : merges) {
size_t space_pos = merge.find(' ');
merge_pairs.emplace_back(merge.substr(0, space_pos), merge.substr(space_pos + 1));
// LOG_DEBUG("%s", utf32_to_utf8(merge.substr(space_pos + 1)).c_str());
// printf("%s :: %s | %s \n", utf32_to_utf8(merge).c_str(), utf32_to_utf8(merge.substr(0, space_pos)).c_str(),
// utf32_to_utf8(merge.substr(space_pos + 1)).c_str());
}
std::vector<std::u32string> vocab;
for (const auto& pair : byte_unicode_pairs) {
vocab.push_back(pair.second);
}
for (const auto& pair : byte_unicode_pairs) {
vocab.push_back(pair.second + utf8_to_utf32("</w>"));
}
for (const auto& merge : merge_pairs) {
vocab.push_back(merge.first + merge.second);
}
vocab.push_back(utf8_to_utf32("<|startoftext|>"));
vocab.push_back(utf8_to_utf32("<|endoftext|>"));
LOG_DEBUG("vocab size: %llu", vocab.size());
int i = 0;
for (const auto& token : vocab) {
encoder[token] = i;
decoder[i] = token;
i++;
}
encoder_len = i;
auto it = encoder.find(utf8_to_utf32("img</w>"));
if (it != encoder.end()) {
LOG_DEBUG(" trigger word img already in vocab");
} else {
LOG_DEBUG(" trigger word img not in vocab yet");
}
int rank = 0;
for (const auto& merge : merge_pairs) {
bpe_ranks[merge] = rank++;
}
bpe_len = rank;
};
void add_token(const std::string& text) {
std::u32string token = utf8_to_utf32(text);
auto it = encoder.find(token);
if (it != encoder.end()) {
encoder[token] = encoder_len;
decoder[encoder_len] = token;
encoder_len++;
}
}
std::u32string bpe(const std::u32string& token) {
std::vector<std::u32string> word;
for (int i = 0; i < token.size() - 1; i++) {
word.emplace_back(1, token[i]);
}
word.push_back(token.substr(token.size() - 1) + utf8_to_utf32("</w>"));
std::set<std::pair<std::u32string, std::u32string>> pairs = get_pairs(word);
if (pairs.empty()) {
return token + utf8_to_utf32("</w>");
}
while (true) {
auto min_pair_iter = std::min_element(pairs.begin(),
pairs.end(),
[&](const std::pair<std::u32string, std::u32string>& a,
const std::pair<std::u32string, std::u32string>& b) {
if (bpe_ranks.find(a) == bpe_ranks.end()) {
return false;
} else if (bpe_ranks.find(b) == bpe_ranks.end()) {
return true;
}
return bpe_ranks.at(a) < bpe_ranks.at(b);
});
const std::pair<std::u32string, std::u32string>& bigram = *min_pair_iter;
if (bpe_ranks.find(bigram) == bpe_ranks.end()) {
break;
}
std::u32string first = bigram.first;
std::u32string second = bigram.second;
std::vector<std::u32string> new_word;
int32_t i = 0;
while (i < word.size()) {
auto it = std::find(word.begin() + i, word.end(), first);
if (it == word.end()) {
new_word.insert(new_word.end(), word.begin() + i, word.end());
break;
}
new_word.insert(new_word.end(), word.begin() + i, it);
i = static_cast<int32_t>(std::distance(word.begin(), it));
if (word[i] == first && i < static_cast<int32_t>(word.size()) - 1 && word[i + 1] == second) {
new_word.push_back(first + second);
i += 2;
} else {
new_word.push_back(word[i]);
i += 1;
}
}
word = new_word;
if (word.size() == 1) {
break;
}
pairs = get_pairs(word);
}
std::u32string result;
for (int i = 0; i < word.size(); i++) {
result += word[i];
if (i != word.size() - 1) {
result += utf8_to_utf32(" ");
}
}
return result;
}
std::vector<int> tokenize(std::string text,
on_new_token_cb_t on_new_token_cb,
size_t max_length = 0,
bool padding = false) {
std::vector<int32_t> tokens = encode(text, on_new_token_cb);
tokens.insert(tokens.begin(), BOS_TOKEN_ID);
if (max_length > 0) {
if (tokens.size() > max_length - 1) {
tokens.resize(max_length - 1);
tokens.push_back(EOS_TOKEN_ID);
} else {
tokens.push_back(EOS_TOKEN_ID);
if (padding) {
tokens.insert(tokens.end(), max_length - tokens.size(), PAD_TOKEN_ID);
}
}
}
return tokens;
}
void pad_tokens(std::vector<int>& tokens,
std::vector<float>& weights,
size_t max_length = 0,
bool padding = false) {
if (max_length > 0 && padding) {
size_t n = std::ceil(tokens.size() * 1.0 / (max_length - 2));
if (n == 0) {
n = 1;
}
size_t length = max_length * n;
LOG_DEBUG("token length: %llu", length);
std::vector<int> new_tokens;
std::vector<float> new_weights;
new_tokens.push_back(BOS_TOKEN_ID);
new_weights.push_back(1.0);
int token_idx = 0;
for (int i = 1; i < length; i++) {
if (token_idx >= tokens.size()) {
break;
}
if (i % max_length == 0) {
new_tokens.push_back(BOS_TOKEN_ID);
new_weights.push_back(1.0);
} else if (i % max_length == max_length - 1) {
new_tokens.push_back(EOS_TOKEN_ID);
new_weights.push_back(1.0);
} else {
new_tokens.push_back(tokens[token_idx]);
new_weights.push_back(weights[token_idx]);
token_idx++;
}
}
new_tokens.push_back(EOS_TOKEN_ID);
new_weights.push_back(1.0);
tokens = new_tokens;
weights = new_weights;
if (padding) {
tokens.insert(tokens.end(), length - tokens.size(), PAD_TOKEN_ID);
weights.insert(weights.end(), length - weights.size(), 1.0);
}
}
}
std::string clean_up_tokenization(std::string& text) {
std::regex pattern(R"( ,)");
// Replace " ," with ","
std::string result = std::regex_replace(text, pattern, ",");
return result;
}
std::string decode(const std::vector<int>& tokens) {
std::string text = "";
for (int t : tokens) {
if (t == 49406 || t == 49407)
continue;
std::u32string ts = decoder[t];
// printf("%d, %s \n", t, utf32_to_utf8(ts).c_str());
std::string s = utf32_to_utf8(ts);
if (s.length() >= 4) {
if (ends_with(s, "</w>")) {
text += s.replace(s.length() - 4, s.length() - 1, "") + " ";
} else {
text += s;
}
} else {
text += " " + s;
}
}
// std::vector<unsigned char> bytes;
// for (auto c : text){
// bytes.push_back(byte_decoder[c]);
// }
// std::string s((char *)bytes.data());
// std::string s = "";
text = clean_up_tokenization(text);
return trim(text);
}
std::vector<int> encode(std::string text, on_new_token_cb_t on_new_token_cb) {
std::string original_text = text;
std::vector<int32_t> bpe_tokens;
text = whitespace_clean(text);
std::transform(text.begin(), text.end(), text.begin(), [](unsigned char c) { return std::tolower(c); });
std::regex pat(R"(<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[[:alpha:]]+|[[:digit:]]|[^[:space:][:alpha:][:digit:]]+)",
std::regex::icase);
std::smatch matches;
std::string str = text;
std::vector<std::string> token_strs;
while (std::regex_search(str, matches, pat)) {
bool skip = on_new_token_cb(str, bpe_tokens);
if (skip) {
continue;
}
for (auto& token : matches) {
std::string token_str = token.str();
std::u32string utf32_token;
for (int i = 0; i < token_str.length(); i++) {
unsigned char b = token_str[i];
utf32_token += byte_encoder[b];
}
auto bpe_strs = bpe(utf32_token);
size_t start = 0;
size_t pos;
while ((pos = bpe_strs.find(' ', start)) != std::u32string::npos) {
auto bpe_str = bpe_strs.substr(start, pos - start);
bpe_tokens.push_back(encoder[bpe_str]);
token_strs.push_back(utf32_to_utf8(bpe_str));
start = pos + 1;
}
auto bpe_str = bpe_strs.substr(start, bpe_strs.size() - start);
bpe_tokens.push_back(encoder[bpe_str]);
token_strs.push_back(utf32_to_utf8(bpe_str));
}
str = matches.suffix();
}
std::stringstream ss;
ss << "[";
for (auto token : token_strs) {
ss << "\"" << token << "\", ";
}
ss << "]";
// LOG_DEBUG("split prompt \"%s\" to tokens %s", original_text.c_str(), ss.str().c_str());
// printf("split prompt \"%s\" to tokens %s \n", original_text.c_str(), ss.str().c_str());
return bpe_tokens;
}
};
/*================================================ FrozenCLIPEmbedder ================================================*/
// Ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py
struct CLIPMLP : public GGMLBlock {
protected:
bool use_gelu;
public:
CLIPMLP(int64_t d_model, int64_t intermediate_size) {
blocks["fc1"] = std::shared_ptr<GGMLBlock>(new Linear(d_model, intermediate_size));
blocks["fc2"] = std::shared_ptr<GGMLBlock>(new Linear(intermediate_size, d_model));
if (d_model == 1024 || d_model == 1280) { // SD 2.x
use_gelu = true;
} else { // SD 1.x
use_gelu = false;
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, n_token, d_model]
auto fc1 = std::dynamic_pointer_cast<Linear>(blocks["fc1"]);
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
x = fc1->forward(ctx, x);
if (use_gelu) {
x = ggml_gelu_inplace(ctx, x);
} else {
x = ggml_gelu_quick_inplace(ctx, x);
}
x = fc2->forward(ctx, x);
return x;
}
};
struct CLIPLayer : public GGMLBlock {
protected:
int64_t d_model; // hidden_size/embed_dim
int64_t n_head;
int64_t intermediate_size;
public:
CLIPLayer(int64_t d_model,
int64_t n_head,
int64_t intermediate_size)
: d_model(d_model),
n_head(n_head),
intermediate_size(intermediate_size) {
blocks["self_attn"] = std::shared_ptr<GGMLBlock>(new MultiheadAttention(d_model, n_head, true, true));
blocks["layer_norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_model));
blocks["layer_norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(d_model));
blocks["mlp"] = std::shared_ptr<GGMLBlock>(new CLIPMLP(d_model, intermediate_size));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, bool mask = true) {
// x: [N, n_token, d_model]
auto self_attn = std::dynamic_pointer_cast<MultiheadAttention>(blocks["self_attn"]);
auto layer_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm1"]);
auto layer_norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm2"]);
auto mlp = std::dynamic_pointer_cast<CLIPMLP>(blocks["mlp"]);
x = ggml_add(ctx, x, self_attn->forward(ctx, layer_norm1->forward(ctx, x), mask));
x = ggml_add(ctx, x, mlp->forward(ctx, layer_norm2->forward(ctx, x)));
return x;
}
};
struct CLIPEncoder : public GGMLBlock {
protected:
int64_t n_layer;
public:
CLIPEncoder(int64_t n_layer,
int64_t d_model,
int64_t n_head,
int64_t intermediate_size)
: n_layer(n_layer) {
for (int i = 0; i < n_layer; i++) {
std::string name = "layers." + std::to_string(i);
blocks[name] = std::shared_ptr<GGMLBlock>(new CLIPLayer(d_model, n_head, intermediate_size));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, int clip_skip = -1, bool mask = true) {
// x: [N, n_token, d_model]
int layer_idx = n_layer - 1;
// LOG_DEBUG("clip_skip %d", clip_skip);
if (clip_skip > 0) {
layer_idx = n_layer - clip_skip;
}
for (int i = 0; i < n_layer; i++) {
// LOG_DEBUG("layer %d", i);
if (i == layer_idx + 1) {
break;
}
std::string name = "layers." + std::to_string(i);
auto layer = std::dynamic_pointer_cast<CLIPLayer>(blocks[name]);
x = layer->forward(ctx, x, mask); // [N, n_token, d_model]
// LOG_DEBUG("layer %d", i);
}
return x;
}
};
class CLIPEmbeddings : public GGMLBlock {
protected:
int64_t embed_dim;
int64_t vocab_size;
int64_t num_positions;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
enum ggml_type token_wtype = (tensor_types.find(prefix + "token_embedding.weight") != tensor_types.end()) ? tensor_types[prefix + "token_embedding.weight"] : GGML_TYPE_F32;
enum ggml_type position_wtype = GGML_TYPE_F32; //(tensor_types.find(prefix + "position_embedding.weight") != tensor_types.end()) ? tensor_types[prefix + "position_embedding.weight"] : GGML_TYPE_F32;
params["token_embedding.weight"] = ggml_new_tensor_2d(ctx, token_wtype, embed_dim, vocab_size);
params["position_embedding.weight"] = ggml_new_tensor_2d(ctx, position_wtype, embed_dim, num_positions);
}
public:
CLIPEmbeddings(int64_t embed_dim,
int64_t vocab_size = 49408,
int64_t num_positions = 77)
: embed_dim(embed_dim),
vocab_size(vocab_size),
num_positions(num_positions) {
}
struct ggml_tensor* get_token_embed_weight() {
return params["token_embedding.weight"];
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* input_ids,
struct ggml_tensor* custom_embed_weight) {
// input_ids: [N, n_token]
auto token_embed_weight = params["token_embedding.weight"];
auto position_embed_weight = params["position_embedding.weight"];
GGML_ASSERT(input_ids->ne[0] == position_embed_weight->ne[1]);
input_ids = ggml_reshape_3d(ctx, input_ids, input_ids->ne[0], 1, input_ids->ne[1]);
auto token_embedding = ggml_get_rows(ctx, custom_embed_weight != NULL ? custom_embed_weight : token_embed_weight, input_ids);
token_embedding = ggml_reshape_3d(ctx, token_embedding, token_embedding->ne[0], token_embedding->ne[1], token_embedding->ne[3]);
// token_embedding + position_embedding
auto x = ggml_add(ctx,
token_embedding,
position_embed_weight); // [N, n_token, embed_dim]
return x;
}
};
class CLIPVisionEmbeddings : public GGMLBlock {
protected:
int64_t embed_dim;
int64_t num_channels;
int64_t patch_size;
int64_t image_size;
int64_t num_patches;
int64_t num_positions;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
enum ggml_type patch_wtype = GGML_TYPE_F16; // tensor_types.find(prefix + "patch_embedding.weight") != tensor_types.end() ? tensor_types[prefix + "patch_embedding.weight"] : GGML_TYPE_F16;
enum ggml_type class_wtype = GGML_TYPE_F32; // tensor_types.find(prefix + "class_embedding") != tensor_types.end() ? tensor_types[prefix + "class_embedding"] : GGML_TYPE_F32;
enum ggml_type position_wtype = GGML_TYPE_F32; // tensor_types.find(prefix + "position_embedding.weight") != tensor_types.end() ? tensor_types[prefix + "position_embedding.weight"] : GGML_TYPE_F32;
params["patch_embedding.weight"] = ggml_new_tensor_4d(ctx, patch_wtype, patch_size, patch_size, num_channels, embed_dim);
params["class_embedding"] = ggml_new_tensor_1d(ctx, class_wtype, embed_dim);
params["position_embedding.weight"] = ggml_new_tensor_2d(ctx, position_wtype, embed_dim, num_positions);
}
public:
CLIPVisionEmbeddings(int64_t embed_dim,
int64_t num_channels = 3,
int64_t patch_size = 14,
int64_t image_size = 224)
: embed_dim(embed_dim),
num_channels(num_channels),
patch_size(patch_size),
image_size(image_size) {
num_patches = (image_size / patch_size) * (image_size / patch_size);
num_positions = num_patches + 1;
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* pixel_values) {
// pixel_values: [N, num_channels, image_size, image_size]
// return: [N, num_positions, embed_dim]
GGML_ASSERT(pixel_values->ne[0] == image_size && pixel_values->ne[1] == image_size && pixel_values->ne[2] == num_channels);
auto patch_embed_weight = params["patch_embedding.weight"];
auto class_embed_weight = params["class_embedding"];
auto position_embed_weight = params["position_embedding.weight"];
// concat(patch_embedding, class_embedding) + position_embedding
struct ggml_tensor* patch_embedding;
int64_t N = pixel_values->ne[3];
patch_embedding = ggml_nn_conv_2d(ctx, pixel_values, patch_embed_weight, NULL, patch_size, patch_size); // [N, embed_dim, image_size // pacht_size, image_size // pacht_size]
patch_embedding = ggml_reshape_3d(ctx, patch_embedding, num_patches, embed_dim, N); // [N, embed_dim, num_patches]
patch_embedding = ggml_cont(ctx, ggml_permute(ctx, patch_embedding, 1, 0, 2, 3)); // [N, num_patches, embed_dim]
patch_embedding = ggml_reshape_4d(ctx, patch_embedding, 1, embed_dim, num_patches, N); // [N, num_patches, embed_dim, 1]
struct ggml_tensor* class_embedding = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, embed_dim, N);
class_embedding = ggml_repeat(ctx, class_embed_weight, class_embedding); // [N, embed_dim]
class_embedding = ggml_reshape_4d(ctx, class_embedding, 1, embed_dim, 1, N); // [N, 1, embed_dim, 1]
struct ggml_tensor* x = ggml_concat(ctx, class_embedding, patch_embedding, 2); // [N, num_positions, embed_dim, 1]
x = ggml_reshape_3d(ctx, x, embed_dim, num_positions, N); // [N, num_positions, embed_dim]
x = ggml_add(ctx, x, position_embed_weight);
return x; // [N, num_positions, embed_dim]
}
};
// OPENAI_CLIP_VIT_L_14: https://huggingface.co/openai/clip-vit-large-patch14/blob/main/config.json
// OPEN_CLIP_VIT_H_14: https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K/blob/main/config.json
// OPEN_CLIP_VIT_BIGG_14: https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/blob/main/config.json (CLIPTextModelWithProjection)
enum CLIPVersion {
OPENAI_CLIP_VIT_L_14, // SD 1.x and SDXL
OPEN_CLIP_VIT_H_14, // SD 2.x
OPEN_CLIP_VIT_BIGG_14, // SDXL
};
class CLIPTextModel : public GGMLBlock {
protected:
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
if (version == OPEN_CLIP_VIT_BIGG_14) {
enum ggml_type wtype = GGML_TYPE_F32; // tensor_types.find(prefix + "text_projection") != tensor_types.end() ? tensor_types[prefix + "text_projection"] : GGML_TYPE_F32;
params["text_projection"] = ggml_new_tensor_2d(ctx, wtype, projection_dim, hidden_size);
}
}
public:
CLIPVersion version = OPENAI_CLIP_VIT_L_14;
// network hparams
int32_t vocab_size = 49408;
int32_t n_token = 77; // max_position_embeddings
int32_t hidden_size = 768;
int32_t intermediate_size = 3072;
int32_t n_head = 12;
int32_t n_layer = 12; // num_hidden_layers
int32_t projection_dim = 1280; // only for OPEN_CLIP_VIT_BIGG_14
int32_t clip_skip = -1;
bool with_final_ln = true;
CLIPTextModel(CLIPVersion version = OPENAI_CLIP_VIT_L_14,
int clip_skip_value = -1,
bool with_final_ln = true)
: version(version), with_final_ln(with_final_ln) {
if (version == OPEN_CLIP_VIT_H_14) {
hidden_size = 1024;
intermediate_size = 4096;
n_head = 16;
n_layer = 24;
} else if (version == OPEN_CLIP_VIT_BIGG_14) { // CLIPTextModelWithProjection
hidden_size = 1280;
intermediate_size = 5120;
n_head = 20;
n_layer = 32;
}
set_clip_skip(clip_skip_value);
blocks["embeddings"] = std::shared_ptr<GGMLBlock>(new CLIPEmbeddings(hidden_size, vocab_size, n_token));
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new CLIPEncoder(n_layer, hidden_size, n_head, intermediate_size));
blocks["final_layer_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size));
}
void set_clip_skip(int skip) {
if (skip <= 0) {
return;
}
clip_skip = skip;
}
struct ggml_tensor* get_token_embed_weight() {
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]);
return embeddings->get_token_embed_weight();
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* input_ids,
struct ggml_tensor* tkn_embeddings,
size_t max_token_idx = 0,
bool return_pooled = false) {
// input_ids: [N, n_token]
auto embeddings = std::dynamic_pointer_cast<CLIPEmbeddings>(blocks["embeddings"]);
auto encoder = std::dynamic_pointer_cast<CLIPEncoder>(blocks["encoder"]);
auto final_layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["final_layer_norm"]);
auto x = embeddings->forward(ctx, input_ids, tkn_embeddings); // [N, n_token, hidden_size]
x = encoder->forward(ctx, x, return_pooled ? -1 : clip_skip, true);
if (return_pooled || with_final_ln) {
x = final_layer_norm->forward(ctx, x);
}
if (return_pooled) {
auto text_projection = params["text_projection"];
ggml_tensor* pooled = ggml_view_1d(ctx, x, hidden_size, x->nb[1] * max_token_idx);
if (text_projection != NULL) {
pooled = ggml_nn_linear(ctx, pooled, text_projection, NULL);
} else {
LOG_DEBUG("Missing text_projection matrix, assuming identity...");
}
return pooled; // [hidden_size, 1, 1]
}
return x; // [N, n_token, hidden_size]
}
};
class CLIPVisionModel : public GGMLBlock {
public:
// network hparams
int32_t num_channels = 3;
int32_t patch_size = 14;
int32_t image_size = 224;
int32_t num_positions = 257; // (image_size / patch_size)^2 + 1
int32_t hidden_size = 1024;
int32_t intermediate_size = 4096;
int32_t n_head = 16;
int32_t n_layer = 24;
public:
CLIPVisionModel(CLIPVersion version = OPENAI_CLIP_VIT_L_14) {
if (version == OPEN_CLIP_VIT_H_14) {
hidden_size = 1280;
intermediate_size = 5120;
n_head = 16;
n_layer = 32;
} else if (version == OPEN_CLIP_VIT_BIGG_14) {
hidden_size = 1664;
intermediate_size = 8192;
n_head = 16;
n_layer = 48;
}
blocks["embeddings"] = std::shared_ptr<GGMLBlock>(new CLIPVisionEmbeddings(hidden_size, num_channels, patch_size, image_size));
blocks["pre_layernorm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size));
blocks["encoder"] = std::shared_ptr<GGMLBlock>(new CLIPEncoder(n_layer, hidden_size, n_head, intermediate_size));
blocks["post_layernorm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* pixel_values, bool return_pooled = true) {
// pixel_values: [N, num_channels, image_size, image_size]
auto embeddings = std::dynamic_pointer_cast<CLIPVisionEmbeddings>(blocks["embeddings"]);
auto pre_layernorm = std::dynamic_pointer_cast<LayerNorm>(blocks["pre_layernorm"]);
auto encoder = std::dynamic_pointer_cast<CLIPEncoder>(blocks["encoder"]);
auto post_layernorm = std::dynamic_pointer_cast<LayerNorm>(blocks["post_layernorm"]);
auto x = embeddings->forward(ctx, pixel_values); // [N, num_positions, embed_dim]
x = pre_layernorm->forward(ctx, x);
x = encoder->forward(ctx, x, -1, false);
// print_ggml_tensor(x, true, "ClipVisionModel x: ");
auto last_hidden_state = x;
x = post_layernorm->forward(ctx, x); // [N, n_token, hidden_size]
GGML_ASSERT(x->ne[3] == 1);
if (return_pooled) {
ggml_tensor* pooled = ggml_cont(ctx, ggml_view_2d(ctx, x, x->ne[0], x->ne[2], x->nb[2], 0));
return pooled; // [N, hidden_size]
} else {
// return x; // [N, n_token, hidden_size]
return last_hidden_state; // [N, n_token, hidden_size]
}
}
};
class CLIPProjection : public UnaryBlock {
protected:
int64_t in_features;
int64_t out_features;
bool transpose_weight;
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") {
enum ggml_type wtype = tensor_types.find(prefix + "weight") != tensor_types.end() ? tensor_types[prefix + "weight"] : GGML_TYPE_F32;
if (transpose_weight) {
params["weight"] = ggml_new_tensor_2d(ctx, wtype, out_features, in_features);
} else {
params["weight"] = ggml_new_tensor_2d(ctx, wtype, in_features, out_features);
}
}
public:
CLIPProjection(int64_t in_features,
int64_t out_features,
bool transpose_weight = false)
: in_features(in_features),
out_features(out_features),
transpose_weight(transpose_weight) {}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
struct ggml_tensor* w = params["weight"];
if (transpose_weight) {
w = ggml_cont(ctx, ggml_transpose(ctx, w));
}
return ggml_nn_linear(ctx, x, w, NULL);
}
};
class CLIPVisionModelProjection : public GGMLBlock {
public:
int32_t hidden_size = 1024;
int32_t projection_dim = 768;
int32_t image_size = 224;
public:
CLIPVisionModelProjection(CLIPVersion version = OPENAI_CLIP_VIT_L_14,
bool transpose_proj_w = false) {
if (version == OPEN_CLIP_VIT_H_14) {
hidden_size = 1280;
projection_dim = 1024;
} else if (version == OPEN_CLIP_VIT_BIGG_14) {
hidden_size = 1664;
}
blocks["vision_model"] = std::shared_ptr<GGMLBlock>(new CLIPVisionModel(version));
blocks["visual_projection"] = std::shared_ptr<GGMLBlock>(new CLIPProjection(hidden_size, projection_dim, transpose_proj_w));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* pixel_values) {
// pixel_values: [N, num_channels, image_size, image_size]
// return: [N, projection_dim]
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]);
auto visual_projection = std::dynamic_pointer_cast<CLIPProjection>(blocks["visual_projection"]);
auto x = vision_model->forward(ctx, pixel_values); // [N, hidden_size]
x = visual_projection->forward(ctx, x); // [N, projection_dim]
return x; // [N, projection_dim]
}
};
struct CLIPTextModelRunner : public GGMLRunner {
CLIPTextModel model;
CLIPTextModelRunner(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
CLIPVersion version = OPENAI_CLIP_VIT_L_14,
int clip_skip_value = 1,
bool with_final_ln = true)
: GGMLRunner(backend), model(version, clip_skip_value, with_final_ln) {
model.init(params_ctx, tensor_types, prefix);
}
std::string get_desc() {
return "clip";
}
void set_clip_skip(int clip_skip) {
model.set_clip_skip(clip_skip);
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
model.get_param_tensors(tensors, prefix);
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* input_ids,
struct ggml_tensor* embeddings,
size_t max_token_idx = 0,
bool return_pooled = false) {
size_t N = input_ids->ne[1];
size_t n_token = input_ids->ne[0];
if (input_ids->ne[0] > model.n_token) {
GGML_ASSERT(input_ids->ne[0] % model.n_token == 0);
input_ids = ggml_reshape_2d(ctx, input_ids, model.n_token, input_ids->ne[0] / model.n_token);
}
return model.forward(ctx, input_ids, embeddings, max_token_idx, return_pooled);
}
struct ggml_cgraph* build_graph(struct ggml_tensor* input_ids,
int num_custom_embeddings = 0,
void* custom_embeddings_data = NULL,
size_t max_token_idx = 0,
bool return_pooled = false) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
input_ids = to_backend(input_ids);
struct ggml_tensor* embeddings = NULL;
if (num_custom_embeddings > 0 && custom_embeddings_data != NULL) {
auto token_embed_weight = model.get_token_embed_weight();
auto custom_embeddings = ggml_new_tensor_2d(compute_ctx,
token_embed_weight->type,
model.hidden_size,
num_custom_embeddings);
set_backend_tensor_data(custom_embeddings, custom_embeddings_data);
// concatenate custom embeddings
embeddings = ggml_concat(compute_ctx, token_embed_weight, custom_embeddings, 1);
}
struct ggml_tensor* hidden_states = forward(compute_ctx, input_ids, embeddings, max_token_idx, return_pooled);
ggml_build_forward_expand(gf, hidden_states);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* input_ids,
int num_custom_embeddings,
void* custom_embeddings_data,
size_t max_token_idx,
bool return_pooled,
ggml_tensor** output,
ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(input_ids, num_custom_embeddings, custom_embeddings_data, max_token_idx, return_pooled);
};
GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx);
}
};
#endif // __CLIP_HPP__
|