|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <cassert> |
|
#include <cstring> |
|
#include <fstream> |
|
#include <regex> |
|
#include <iostream> |
|
#include <iterator> |
|
#include <queue> |
|
#include <string> |
|
#include <math.h> |
|
#include <cstdint> |
|
#include "expose.h" |
|
#include "model_adapter.cpp" |
|
|
|
extern "C" |
|
{ |
|
|
|
std::string platformenv, deviceenv, vulkandeviceenv; |
|
|
|
|
|
static FileFormat file_format = FileFormat::BADFORMAT; |
|
static FileFormatExtraMeta file_format_meta; |
|
|
|
bool load_model(const load_model_inputs inputs) |
|
{ |
|
std::string model = inputs.model_filename; |
|
lora_filename = inputs.lora_filename; |
|
lora_base = inputs.lora_base; |
|
mmproj_filename = inputs.mmproj_filename; |
|
draftmodel_filename = inputs.draftmodel_filename; |
|
|
|
int forceversion = inputs.forceversion; |
|
|
|
file_format = check_file_format(model.c_str(),&file_format_meta); |
|
|
|
if(forceversion!=0) |
|
{ |
|
printf("\nWARNING: FILE FORMAT FORCED TO VER %d\nIf incorrect, loading may fail or crash.\n",forceversion); |
|
file_format = (FileFormat)forceversion; |
|
} |
|
|
|
|
|
int cl_parseinfo = inputs.clblast_info; |
|
|
|
std::string usingclblast = "GGML_OPENCL_CONFIGURED="+std::to_string(cl_parseinfo>0?1:0); |
|
putenv((char*)usingclblast.c_str()); |
|
|
|
cl_parseinfo = cl_parseinfo%100; |
|
int platform = cl_parseinfo/10; |
|
int devices = cl_parseinfo%10; |
|
platformenv = "GGML_OPENCL_PLATFORM="+std::to_string(platform); |
|
deviceenv = "GGML_OPENCL_DEVICE="+std::to_string(devices); |
|
putenv((char*)platformenv.c_str()); |
|
putenv((char*)deviceenv.c_str()); |
|
|
|
std::string vulkan_info_raw = inputs.vulkan_info; |
|
std::string vulkan_info_str = ""; |
|
for (size_t i = 0; i < vulkan_info_raw.length(); ++i) { |
|
vulkan_info_str += vulkan_info_raw[i]; |
|
if (i < vulkan_info_raw.length() - 1) { |
|
vulkan_info_str += ","; |
|
} |
|
} |
|
if(vulkan_info_str!="") |
|
{ |
|
vulkandeviceenv = "GGML_VK_VISIBLE_DEVICES="+vulkan_info_str; |
|
putenv((char*)vulkandeviceenv.c_str()); |
|
} |
|
|
|
executable_path = inputs.executable_path; |
|
|
|
if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2 || file_format==FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4 || file_format==FileFormat::GPTJ_5) |
|
{ |
|
printf("\n---\nIdentified as Legacy GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
ModelLoadResult lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
if (lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
if(file_format==FileFormat::GPTJ_1) |
|
{ |
|
|
|
|
|
file_format = FileFormat::GPTJ_4; |
|
printf("\n---\nRetrying as Legacy GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
} |
|
|
|
if (lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
file_format = FileFormat::GPTJ_3; |
|
printf("\n---\nRetrying as Legacy GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
} |
|
|
|
|
|
if (lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
file_format = FileFormat::GPTJ_2; |
|
printf("\n---\nRetrying as Legacy GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
} |
|
} |
|
|
|
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
return false; |
|
} |
|
else |
|
{ |
|
return true; |
|
} |
|
} |
|
else if(file_format==FileFormat::GPT2_1||file_format==FileFormat::GPT2_2||file_format==FileFormat::GPT2_3||file_format==FileFormat::GPT2_4) |
|
{ |
|
printf("\n---\nIdentified as Legacy GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
ModelLoadResult lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
if (lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
file_format = FileFormat::GPT2_3; |
|
printf("\n---\nRetrying as Legacy GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
} |
|
if (lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
file_format = FileFormat::GPT2_2; |
|
printf("\n---\nRetrying as Legacy GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
} |
|
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
return false; |
|
} |
|
else |
|
{ |
|
return true; |
|
} |
|
} |
|
else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5 || file_format==FileFormat::NEOX_6 || file_format==FileFormat::NEOX_7) |
|
{ |
|
printf("\n---\nIdentified as Legacy GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
ModelLoadResult lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
if (lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
if(file_format==FileFormat::NEOX_2) |
|
{ |
|
file_format = FileFormat::NEOX_3; |
|
printf("\n---\nRetrying as Legacy GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
} |
|
else |
|
{ |
|
file_format = FileFormat::NEOX_5; |
|
printf("\n---\nRetrying as Legacy GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
} |
|
} |
|
if (lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
file_format = FileFormat::NEOX_1; |
|
printf("\n---\nRetrying as Legacy GPT-NEO-X model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
} |
|
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
return false; |
|
} |
|
else |
|
{ |
|
return true; |
|
} |
|
} |
|
else |
|
{ |
|
if(file_format==FileFormat::MPT_1) |
|
{ |
|
printf("\n---\nIdentified as Legacy MPT model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
} |
|
else if(file_format==FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2) |
|
{ |
|
printf("\n---\nIdentified as Legacy RWKV model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
} |
|
else if(file_format==FileFormat::GGUF_GENERIC) |
|
{ |
|
printf("\n---\nIdentified as GGUF model: (ver %d)\nAttempting to Load...\n---\n", file_format); |
|
} |
|
else if(file_format==FileFormat::GGML || file_format==FileFormat::GGHF || file_format==FileFormat::GGJT || file_format==FileFormat::GGJT_2 || file_format==FileFormat::GGJT_3) |
|
{ |
|
printf("\n---\nIdentified as Legacy GGML model: (ver %d)\n======\nGGML Models are Outdated: You are STRONGLY ENCOURAGED to obtain a newer GGUF model!\n======\nAttempting to Load...\n---\n", file_format); |
|
} |
|
else |
|
{ |
|
printf("\n---\nUnidentified Model Encountered: (ver %d)\n---\n", file_format); |
|
} |
|
ModelLoadResult lr = gpttype_load_model(inputs, file_format, file_format_meta); |
|
if(file_format==FileFormat::GGML || file_format==FileFormat::GGHF || file_format==FileFormat::GGJT || file_format==FileFormat::GGJT_2 || file_format==FileFormat::GGJT_3) |
|
{ |
|
|
|
printf("\n======\nGGML Models are Outdated: You are STRONGLY ENCOURAGED to obtain a newer GGUF model!\n======\n"); |
|
} |
|
if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD) |
|
{ |
|
return false; |
|
} |
|
else |
|
{ |
|
return true; |
|
} |
|
} |
|
} |
|
|
|
generation_outputs generate(const generation_inputs inputs) |
|
{ |
|
return gpttype_generate(inputs); |
|
} |
|
|
|
bool sd_load_model(const sd_load_model_inputs inputs) |
|
{ |
|
return sdtype_load_model(inputs); |
|
} |
|
sd_generation_outputs sd_generate(const sd_generation_inputs inputs) |
|
{ |
|
return sdtype_generate(inputs); |
|
} |
|
|
|
bool whisper_load_model(const whisper_load_model_inputs inputs) |
|
{ |
|
return whispertype_load_model(inputs); |
|
} |
|
whisper_generation_outputs whisper_generate(const whisper_generation_inputs inputs) |
|
{ |
|
return whispertype_generate(inputs); |
|
} |
|
|
|
bool tts_load_model(const tts_load_model_inputs inputs) |
|
{ |
|
return ttstype_load_model(inputs); |
|
} |
|
tts_generation_outputs tts_generate(const tts_generation_inputs inputs) |
|
{ |
|
return ttstype_generate(inputs); |
|
} |
|
|
|
const char * new_token(int idx) { |
|
if (generated_tokens.size() <= idx || idx < 0) return nullptr; |
|
|
|
return generated_tokens[idx].c_str(); |
|
} |
|
|
|
int get_stream_count() { |
|
return generated_tokens.size(); |
|
} |
|
|
|
bool has_finished() { |
|
return generation_finished; |
|
} |
|
|
|
float get_last_eval_time() { |
|
return last_eval_time; |
|
} |
|
float get_last_process_time() { |
|
return last_process_time; |
|
} |
|
int get_last_token_count() { |
|
return last_token_count; |
|
} |
|
int get_last_seed() |
|
{ |
|
return last_seed; |
|
} |
|
int get_last_draft_success() |
|
{ |
|
return last_draft_success; |
|
} |
|
int get_last_draft_failed() |
|
{ |
|
return last_draft_failed; |
|
} |
|
int get_total_gens() { |
|
return total_gens; |
|
} |
|
int get_total_img_gens() |
|
{ |
|
return total_img_gens; |
|
} |
|
int get_total_tts_gens() |
|
{ |
|
return total_tts_gens; |
|
} |
|
int get_total_transcribe_gens() |
|
{ |
|
return total_transcribe_gens; |
|
} |
|
int get_last_stop_reason() { |
|
return (int)last_stop_reason; |
|
} |
|
|
|
static std::string chat_template = ""; |
|
const char* get_chat_template() { |
|
chat_template = gpttype_get_chat_template(); |
|
return chat_template.c_str(); |
|
} |
|
|
|
const char* get_pending_output() { |
|
return gpttype_get_pending_output().c_str(); |
|
} |
|
|
|
bool abort_generate() { |
|
return gpttype_generate_abort(); |
|
} |
|
|
|
static std::vector<int> toks; |
|
token_count_outputs token_count(const char * input, bool addbos) |
|
{ |
|
std::string inputstr = input; |
|
token_count_outputs output; |
|
toks = gpttype_get_token_arr(inputstr,addbos); |
|
output.count = toks.size(); |
|
output.ids = toks.data(); |
|
return output; |
|
} |
|
|
|
static std::string detokenized_str = ""; |
|
const char * detokenize(const token_count_outputs input) |
|
{ |
|
std::vector<int> input_arr; |
|
for(int i=0;i<input.count;++i) |
|
{ |
|
input_arr.push_back(input.ids[i]); |
|
} |
|
detokenized_str = gpttype_detokenize(input_arr,false); |
|
return detokenized_str.c_str(); |
|
} |
|
|
|
static std::vector<TopPicksData> last_logprob_toppicks; |
|
static std::vector<logprob_item> last_logprob_items; |
|
last_logprobs_outputs last_logprobs() |
|
{ |
|
last_logprobs_outputs output; |
|
last_logprob_items.clear(); |
|
last_logprob_toppicks.clear(); |
|
last_logprob_toppicks = gpttype_get_top_picks_data(); |
|
for(int i=0;i<last_logprob_toppicks.size();++i) |
|
{ |
|
logprob_item itm; |
|
itm.option_count = last_logprob_toppicks[i].tokenid.size(); |
|
itm.selected_token = last_logprob_toppicks[i].selected_token.c_str(); |
|
itm.selected_logprob = last_logprob_toppicks[i].selected_logprob; |
|
itm.logprobs = last_logprob_toppicks[i].logprobs.data(); |
|
for(int j=0;j<itm.option_count && j<logprobs_max;++j) |
|
{ |
|
itm.tokens[j] = last_logprob_toppicks[i].tokens[j].c_str(); |
|
} |
|
last_logprob_items.push_back(itm); |
|
} |
|
output.count = last_logprob_items.size(); |
|
output.logprob_items = last_logprob_items.data(); |
|
return output; |
|
} |
|
|
|
|
|
} |
|
|