Darkknight535's picture
Upload folder using huggingface_hub
1d30d42 verified
#ifndef __DIFFUSION_MODEL_H__
#define __DIFFUSION_MODEL_H__
#include "flux.hpp"
#include "mmdit.hpp"
#include "unet.hpp"
struct DiffusionModel {
virtual void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) = 0;
virtual void alloc_params_buffer() = 0;
virtual void free_params_buffer() = 0;
virtual void free_compute_buffer() = 0;
virtual void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) = 0;
virtual size_t get_params_buffer_size() = 0;
virtual int64_t get_adm_in_channels() = 0;
};
struct UNetModel : public DiffusionModel {
UNetModelRunner unet;
UNetModel(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
SDVersion version = VERSION_SD1,
bool flash_attn = false)
: unet(backend, tensor_types, "model.diffusion_model", version, flash_attn) {
}
void alloc_params_buffer() {
unet.alloc_params_buffer();
}
void free_params_buffer() {
unet.free_params_buffer();
}
void free_compute_buffer() {
unet.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
unet.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() {
return unet.get_params_buffer_size();
}
int64_t get_adm_in_channels() {
return unet.unet.adm_in_channels;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
(void)skip_layers; // SLG doesn't work with UNet models
return unet.compute(n_threads, x, timesteps, context, c_concat, y, num_video_frames, controls, control_strength, output, output_ctx);
}
};
struct MMDiTModel : public DiffusionModel {
MMDiTRunner mmdit;
MMDiTModel(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types)
: mmdit(backend, tensor_types, "model.diffusion_model") {
}
void alloc_params_buffer() {
mmdit.alloc_params_buffer();
}
void free_params_buffer() {
mmdit.free_params_buffer();
}
void free_compute_buffer() {
mmdit.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
mmdit.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() {
return mmdit.get_params_buffer_size();
}
int64_t get_adm_in_channels() {
return 768 + 1280;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
return mmdit.compute(n_threads, x, timesteps, context, y, output, output_ctx, skip_layers);
}
};
struct FluxModel : public DiffusionModel {
Flux::FluxRunner flux;
FluxModel(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
bool flash_attn = false)
: flux(backend, tensor_types, "model.diffusion_model", flash_attn) {
}
void alloc_params_buffer() {
flux.alloc_params_buffer();
}
void free_params_buffer() {
flux.free_params_buffer();
}
void free_compute_buffer() {
flux.free_compute_buffer();
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
flux.get_param_tensors(tensors, "model.diffusion_model");
}
size_t get_params_buffer_size() {
return flux.get_params_buffer_size();
}
int64_t get_adm_in_channels() {
return 768;
}
void compute(int n_threads,
struct ggml_tensor* x,
struct ggml_tensor* timesteps,
struct ggml_tensor* context,
struct ggml_tensor* c_concat,
struct ggml_tensor* y,
struct ggml_tensor* guidance,
int num_video_frames = -1,
std::vector<struct ggml_tensor*> controls = {},
float control_strength = 0.f,
struct ggml_tensor** output = NULL,
struct ggml_context* output_ctx = NULL,
std::vector<int> skip_layers = std::vector<int>()) {
return flux.compute(n_threads, x, timesteps, context, y, guidance, output, output_ctx, skip_layers);
}
};
#endif