|
#ifndef __FLUX_HPP__ |
|
#define __FLUX_HPP__ |
|
|
|
#include <vector> |
|
|
|
#include "ggml_extend.hpp" |
|
#include "model.h" |
|
|
|
#define FLUX_GRAPH_SIZE 10240 |
|
|
|
namespace Flux { |
|
|
|
struct MLPEmbedder : public UnaryBlock { |
|
public: |
|
MLPEmbedder(int64_t in_dim, int64_t hidden_dim) { |
|
blocks["in_layer"] = std::shared_ptr<GGMLBlock>(new Linear(in_dim, hidden_dim, true)); |
|
blocks["out_layer"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_dim, hidden_dim, true)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
|
|
|
|
auto in_layer = std::dynamic_pointer_cast<Linear>(blocks["in_layer"]); |
|
auto out_layer = std::dynamic_pointer_cast<Linear>(blocks["out_layer"]); |
|
|
|
x = in_layer->forward(ctx, x); |
|
x = ggml_silu_inplace(ctx, x); |
|
x = out_layer->forward(ctx, x); |
|
return x; |
|
} |
|
}; |
|
|
|
class RMSNorm : public UnaryBlock { |
|
protected: |
|
int64_t hidden_size; |
|
float eps; |
|
|
|
void init_params(struct ggml_context* ctx, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix = "") { |
|
ggml_type wtype = GGML_TYPE_F32; |
|
params["scale"] = ggml_new_tensor_1d(ctx, wtype, hidden_size); |
|
} |
|
|
|
public: |
|
RMSNorm(int64_t hidden_size, |
|
float eps = 1e-06f) |
|
: hidden_size(hidden_size), |
|
eps(eps) {} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
struct ggml_tensor* w = params["scale"]; |
|
x = ggml_rms_norm(ctx, x, eps); |
|
x = ggml_mul(ctx, x, w); |
|
return x; |
|
} |
|
}; |
|
|
|
struct QKNorm : public GGMLBlock { |
|
public: |
|
QKNorm(int64_t dim) { |
|
blocks["query_norm"] = std::shared_ptr<GGMLBlock>(new RMSNorm(dim)); |
|
blocks["key_norm"] = std::shared_ptr<GGMLBlock>(new RMSNorm(dim)); |
|
} |
|
|
|
struct ggml_tensor* query_norm(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
|
|
|
|
auto norm = std::dynamic_pointer_cast<RMSNorm>(blocks["query_norm"]); |
|
|
|
x = norm->forward(ctx, x); |
|
return x; |
|
} |
|
|
|
struct ggml_tensor* key_norm(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
|
|
|
|
auto norm = std::dynamic_pointer_cast<RMSNorm>(blocks["key_norm"]); |
|
|
|
x = norm->forward(ctx, x); |
|
return x; |
|
} |
|
}; |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* apply_rope(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* pe) { |
|
|
|
|
|
int64_t d_head = x->ne[0]; |
|
int64_t n_head = x->ne[1]; |
|
int64_t L = x->ne[2]; |
|
int64_t N = x->ne[3]; |
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); |
|
x = ggml_reshape_4d(ctx, x, 2, d_head / 2, L, n_head * N); |
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 3, 0, 1, 2)); |
|
|
|
int64_t offset = x->nb[2] * x->ne[2]; |
|
auto x_0 = ggml_view_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2], x->nb[1], x->nb[2], offset * 0); |
|
auto x_1 = ggml_view_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2], x->nb[1], x->nb[2], offset * 1); |
|
x_0 = ggml_reshape_4d(ctx, x_0, 1, x_0->ne[0], x_0->ne[1], x_0->ne[2]); |
|
x_1 = ggml_reshape_4d(ctx, x_1, 1, x_1->ne[0], x_1->ne[1], x_1->ne[2]); |
|
auto temp_x = ggml_new_tensor_4d(ctx, x_0->type, 2, x_0->ne[1], x_0->ne[2], x_0->ne[3]); |
|
x_0 = ggml_repeat(ctx, x_0, temp_x); |
|
x_1 = ggml_repeat(ctx, x_1, temp_x); |
|
|
|
pe = ggml_cont(ctx, ggml_permute(ctx, pe, 3, 0, 1, 2)); |
|
offset = pe->nb[2] * pe->ne[2]; |
|
auto pe_0 = ggml_view_3d(ctx, pe, pe->ne[0], pe->ne[1], pe->ne[2], pe->nb[1], pe->nb[2], offset * 0); |
|
auto pe_1 = ggml_view_3d(ctx, pe, pe->ne[0], pe->ne[1], pe->ne[2], pe->nb[1], pe->nb[2], offset * 1); |
|
|
|
auto x_out = ggml_add_inplace(ctx, ggml_mul(ctx, x_0, pe_0), ggml_mul(ctx, x_1, pe_1)); |
|
x_out = ggml_reshape_3d(ctx, x_out, d_head, L, n_head * N); |
|
return x_out; |
|
} |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* attention(struct ggml_context* ctx, |
|
struct ggml_tensor* q, |
|
struct ggml_tensor* k, |
|
struct ggml_tensor* v, |
|
struct ggml_tensor* pe, |
|
bool flash_attn) { |
|
|
|
|
|
|
|
q = apply_rope(ctx, q, pe); |
|
k = apply_rope(ctx, k, pe); |
|
|
|
auto x = ggml_nn_attention_ext(ctx, q, k, v, v->ne[1], NULL, false, true, flash_attn); |
|
return x; |
|
} |
|
|
|
struct SelfAttention : public GGMLBlock { |
|
public: |
|
int64_t num_heads; |
|
bool flash_attn; |
|
|
|
public: |
|
SelfAttention(int64_t dim, |
|
int64_t num_heads = 8, |
|
bool qkv_bias = false, |
|
bool flash_attn = false) |
|
: num_heads(num_heads) { |
|
int64_t head_dim = dim / num_heads; |
|
blocks["qkv"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim * 3, qkv_bias)); |
|
blocks["norm"] = std::shared_ptr<GGMLBlock>(new QKNorm(head_dim)); |
|
blocks["proj"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim)); |
|
} |
|
|
|
std::vector<struct ggml_tensor*> pre_attention(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
auto qkv_proj = std::dynamic_pointer_cast<Linear>(blocks["qkv"]); |
|
auto norm = std::dynamic_pointer_cast<QKNorm>(blocks["norm"]); |
|
|
|
auto qkv = qkv_proj->forward(ctx, x); |
|
auto qkv_vec = split_qkv(ctx, qkv); |
|
int64_t head_dim = qkv_vec[0]->ne[0] / num_heads; |
|
auto q = ggml_reshape_4d(ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); |
|
auto k = ggml_reshape_4d(ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); |
|
auto v = ggml_reshape_4d(ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); |
|
q = norm->query_norm(ctx, q); |
|
k = norm->key_norm(ctx, k); |
|
return {q, k, v}; |
|
} |
|
|
|
struct ggml_tensor* post_attention(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
auto proj = std::dynamic_pointer_cast<Linear>(blocks["proj"]); |
|
|
|
x = proj->forward(ctx, x); |
|
return x; |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x, struct ggml_tensor* pe) { |
|
|
|
|
|
|
|
auto qkv = pre_attention(ctx, x); |
|
x = attention(ctx, qkv[0], qkv[1], qkv[2], pe, flash_attn); |
|
x = post_attention(ctx, x); |
|
return x; |
|
} |
|
}; |
|
|
|
struct ModulationOut { |
|
ggml_tensor* shift = NULL; |
|
ggml_tensor* scale = NULL; |
|
ggml_tensor* gate = NULL; |
|
|
|
ModulationOut(ggml_tensor* shift = NULL, ggml_tensor* scale = NULL, ggml_tensor* gate = NULL) |
|
: shift(shift), scale(scale), gate(gate) {} |
|
}; |
|
|
|
struct Modulation : public GGMLBlock { |
|
public: |
|
bool is_double; |
|
int multiplier; |
|
|
|
public: |
|
Modulation(int64_t dim, bool is_double) |
|
: is_double(is_double) { |
|
multiplier = is_double ? 6 : 3; |
|
blocks["lin"] = std::shared_ptr<GGMLBlock>(new Linear(dim, dim * multiplier)); |
|
} |
|
|
|
std::vector<ModulationOut> forward(struct ggml_context* ctx, struct ggml_tensor* vec) { |
|
|
|
|
|
auto lin = std::dynamic_pointer_cast<Linear>(blocks["lin"]); |
|
|
|
auto out = ggml_silu(ctx, vec); |
|
out = lin->forward(ctx, out); |
|
|
|
auto m = ggml_reshape_3d(ctx, out, vec->ne[0], multiplier, vec->ne[1]); |
|
m = ggml_cont(ctx, ggml_permute(ctx, m, 0, 2, 1, 3)); |
|
|
|
int64_t offset = m->nb[1] * m->ne[1]; |
|
auto shift_0 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); |
|
auto scale_0 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); |
|
auto gate_0 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 2); |
|
|
|
if (is_double) { |
|
auto shift_1 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 3); |
|
auto scale_1 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 4); |
|
auto gate_1 = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 5); |
|
return {ModulationOut(shift_0, scale_0, gate_0), ModulationOut(shift_1, scale_1, gate_1)}; |
|
} |
|
|
|
return {ModulationOut(shift_0, scale_0, gate_0), ModulationOut()}; |
|
} |
|
}; |
|
|
|
__STATIC_INLINE__ struct ggml_tensor* modulate(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* shift, |
|
struct ggml_tensor* scale) { |
|
|
|
|
|
|
|
scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]); |
|
shift = ggml_reshape_3d(ctx, shift, shift->ne[0], 1, shift->ne[1]); |
|
x = ggml_add(ctx, x, ggml_mul(ctx, x, scale)); |
|
x = ggml_add(ctx, x, shift); |
|
return x; |
|
} |
|
|
|
struct DoubleStreamBlock : public GGMLBlock { |
|
bool flash_attn; |
|
|
|
public: |
|
DoubleStreamBlock(int64_t hidden_size, |
|
int64_t num_heads, |
|
float mlp_ratio, |
|
bool qkv_bias = false, |
|
bool flash_attn = false) |
|
: flash_attn(flash_attn) { |
|
int64_t mlp_hidden_dim = hidden_size * mlp_ratio; |
|
blocks["img_mod"] = std::shared_ptr<GGMLBlock>(new Modulation(hidden_size, true)); |
|
blocks["img_norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false)); |
|
blocks["img_attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qkv_bias, flash_attn)); |
|
|
|
blocks["img_norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false)); |
|
blocks["img_mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, mlp_hidden_dim)); |
|
|
|
blocks["img_mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(mlp_hidden_dim, hidden_size)); |
|
|
|
blocks["txt_mod"] = std::shared_ptr<GGMLBlock>(new Modulation(hidden_size, true)); |
|
blocks["txt_norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false)); |
|
blocks["txt_attn"] = std::shared_ptr<GGMLBlock>(new SelfAttention(hidden_size, num_heads, qkv_bias, flash_attn)); |
|
|
|
blocks["txt_norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false)); |
|
blocks["txt_mlp.0"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, mlp_hidden_dim)); |
|
|
|
blocks["txt_mlp.2"] = std::shared_ptr<GGMLBlock>(new Linear(mlp_hidden_dim, hidden_size)); |
|
} |
|
|
|
std::pair<struct ggml_tensor*, struct ggml_tensor*> forward(struct ggml_context* ctx, |
|
struct ggml_tensor* img, |
|
struct ggml_tensor* txt, |
|
struct ggml_tensor* vec, |
|
struct ggml_tensor* pe) { |
|
|
|
|
|
|
|
|
|
|
|
auto img_mod = std::dynamic_pointer_cast<Modulation>(blocks["img_mod"]); |
|
auto img_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["img_norm1"]); |
|
auto img_attn = std::dynamic_pointer_cast<SelfAttention>(blocks["img_attn"]); |
|
|
|
auto img_norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["img_norm2"]); |
|
auto img_mlp_0 = std::dynamic_pointer_cast<Linear>(blocks["img_mlp.0"]); |
|
auto img_mlp_2 = std::dynamic_pointer_cast<Linear>(blocks["img_mlp.2"]); |
|
|
|
auto txt_mod = std::dynamic_pointer_cast<Modulation>(blocks["txt_mod"]); |
|
auto txt_norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["txt_norm1"]); |
|
auto txt_attn = std::dynamic_pointer_cast<SelfAttention>(blocks["txt_attn"]); |
|
|
|
auto txt_norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["txt_norm2"]); |
|
auto txt_mlp_0 = std::dynamic_pointer_cast<Linear>(blocks["txt_mlp.0"]); |
|
auto txt_mlp_2 = std::dynamic_pointer_cast<Linear>(blocks["txt_mlp.2"]); |
|
|
|
auto img_mods = img_mod->forward(ctx, vec); |
|
ModulationOut img_mod1 = img_mods[0]; |
|
ModulationOut img_mod2 = img_mods[1]; |
|
auto txt_mods = txt_mod->forward(ctx, vec); |
|
ModulationOut txt_mod1 = txt_mods[0]; |
|
ModulationOut txt_mod2 = txt_mods[1]; |
|
|
|
|
|
auto img_modulated = img_norm1->forward(ctx, img); |
|
img_modulated = Flux::modulate(ctx, img_modulated, img_mod1.shift, img_mod1.scale); |
|
auto img_qkv = img_attn->pre_attention(ctx, img_modulated); |
|
auto img_q = img_qkv[0]; |
|
auto img_k = img_qkv[1]; |
|
auto img_v = img_qkv[2]; |
|
|
|
|
|
auto txt_modulated = txt_norm1->forward(ctx, txt); |
|
txt_modulated = Flux::modulate(ctx, txt_modulated, txt_mod1.shift, txt_mod1.scale); |
|
auto txt_qkv = txt_attn->pre_attention(ctx, txt_modulated); |
|
auto txt_q = txt_qkv[0]; |
|
auto txt_k = txt_qkv[1]; |
|
auto txt_v = txt_qkv[2]; |
|
|
|
|
|
auto q = ggml_concat(ctx, txt_q, img_q, 2); |
|
auto k = ggml_concat(ctx, txt_k, img_k, 2); |
|
auto v = ggml_concat(ctx, txt_v, img_v, 2); |
|
|
|
auto attn = attention(ctx, q, k, v, pe, flash_attn); |
|
attn = ggml_cont(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3)); |
|
auto txt_attn_out = ggml_view_3d(ctx, |
|
attn, |
|
attn->ne[0], |
|
attn->ne[1], |
|
txt->ne[1], |
|
attn->nb[1], |
|
attn->nb[2], |
|
0); |
|
txt_attn_out = ggml_cont(ctx, ggml_permute(ctx, txt_attn_out, 0, 2, 1, 3)); |
|
auto img_attn_out = ggml_view_3d(ctx, |
|
attn, |
|
attn->ne[0], |
|
attn->ne[1], |
|
img->ne[1], |
|
attn->nb[1], |
|
attn->nb[2], |
|
attn->nb[2] * txt->ne[1]); |
|
img_attn_out = ggml_cont(ctx, ggml_permute(ctx, img_attn_out, 0, 2, 1, 3)); |
|
|
|
|
|
img = ggml_add(ctx, img, ggml_mul(ctx, img_attn->post_attention(ctx, img_attn_out), img_mod1.gate)); |
|
|
|
auto img_mlp_out = img_mlp_0->forward(ctx, Flux::modulate(ctx, img_norm2->forward(ctx, img), img_mod2.shift, img_mod2.scale)); |
|
img_mlp_out = ggml_gelu_inplace(ctx, img_mlp_out); |
|
img_mlp_out = img_mlp_2->forward(ctx, img_mlp_out); |
|
|
|
img = ggml_add(ctx, img, ggml_mul(ctx, img_mlp_out, img_mod2.gate)); |
|
|
|
|
|
txt = ggml_add(ctx, txt, ggml_mul(ctx, txt_attn->post_attention(ctx, txt_attn_out), txt_mod1.gate)); |
|
|
|
auto txt_mlp_out = txt_mlp_0->forward(ctx, Flux::modulate(ctx, txt_norm2->forward(ctx, txt), txt_mod2.shift, txt_mod2.scale)); |
|
txt_mlp_out = ggml_gelu_inplace(ctx, txt_mlp_out); |
|
txt_mlp_out = txt_mlp_2->forward(ctx, txt_mlp_out); |
|
|
|
txt = ggml_add(ctx, txt, ggml_mul(ctx, txt_mlp_out, txt_mod2.gate)); |
|
|
|
return {img, txt}; |
|
} |
|
}; |
|
|
|
struct SingleStreamBlock : public GGMLBlock { |
|
public: |
|
int64_t num_heads; |
|
int64_t hidden_size; |
|
int64_t mlp_hidden_dim; |
|
bool flash_attn; |
|
|
|
public: |
|
SingleStreamBlock(int64_t hidden_size, |
|
int64_t num_heads, |
|
float mlp_ratio = 4.0f, |
|
float qk_scale = 0.f, |
|
bool flash_attn = false) |
|
: hidden_size(hidden_size), num_heads(num_heads), flash_attn(flash_attn) { |
|
int64_t head_dim = hidden_size / num_heads; |
|
float scale = qk_scale; |
|
if (scale <= 0.f) { |
|
scale = 1 / sqrt((float)head_dim); |
|
} |
|
mlp_hidden_dim = hidden_size * mlp_ratio; |
|
|
|
blocks["linear1"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim)); |
|
blocks["linear2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size + mlp_hidden_dim, hidden_size)); |
|
blocks["norm"] = std::shared_ptr<GGMLBlock>(new QKNorm(head_dim)); |
|
blocks["pre_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-6f, false)); |
|
|
|
blocks["modulation"] = std::shared_ptr<GGMLBlock>(new Modulation(hidden_size, false)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* vec, |
|
struct ggml_tensor* pe) { |
|
|
|
|
|
|
|
|
|
auto linear1 = std::dynamic_pointer_cast<Linear>(blocks["linear1"]); |
|
auto linear2 = std::dynamic_pointer_cast<Linear>(blocks["linear2"]); |
|
auto norm = std::dynamic_pointer_cast<QKNorm>(blocks["norm"]); |
|
auto pre_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["pre_norm"]); |
|
auto modulation = std::dynamic_pointer_cast<Modulation>(blocks["modulation"]); |
|
|
|
auto mods = modulation->forward(ctx, vec); |
|
ModulationOut mod = mods[0]; |
|
|
|
auto x_mod = Flux::modulate(ctx, pre_norm->forward(ctx, x), mod.shift, mod.scale); |
|
auto qkv_mlp = linear1->forward(ctx, x_mod); |
|
qkv_mlp = ggml_cont(ctx, ggml_permute(ctx, qkv_mlp, 2, 0, 1, 3)); |
|
|
|
auto qkv = ggml_view_3d(ctx, |
|
qkv_mlp, |
|
qkv_mlp->ne[0], |
|
qkv_mlp->ne[1], |
|
hidden_size * 3, |
|
qkv_mlp->nb[1], |
|
qkv_mlp->nb[2], |
|
0); |
|
qkv = ggml_cont(ctx, ggml_permute(ctx, qkv, 1, 2, 0, 3)); |
|
auto mlp = ggml_view_3d(ctx, |
|
qkv_mlp, |
|
qkv_mlp->ne[0], |
|
qkv_mlp->ne[1], |
|
mlp_hidden_dim, |
|
qkv_mlp->nb[1], |
|
qkv_mlp->nb[2], |
|
qkv_mlp->nb[2] * hidden_size * 3); |
|
mlp = ggml_cont(ctx, ggml_permute(ctx, mlp, 1, 2, 0, 3)); |
|
|
|
auto qkv_vec = split_qkv(ctx, qkv); |
|
int64_t head_dim = hidden_size / num_heads; |
|
auto q = ggml_reshape_4d(ctx, qkv_vec[0], head_dim, num_heads, qkv_vec[0]->ne[1], qkv_vec[0]->ne[2]); |
|
auto k = ggml_reshape_4d(ctx, qkv_vec[1], head_dim, num_heads, qkv_vec[1]->ne[1], qkv_vec[1]->ne[2]); |
|
auto v = ggml_reshape_4d(ctx, qkv_vec[2], head_dim, num_heads, qkv_vec[2]->ne[1], qkv_vec[2]->ne[2]); |
|
q = norm->query_norm(ctx, q); |
|
k = norm->key_norm(ctx, k); |
|
auto attn = attention(ctx, q, k, v, pe, flash_attn); |
|
|
|
auto attn_mlp = ggml_concat(ctx, attn, ggml_gelu_inplace(ctx, mlp), 0); |
|
auto output = linear2->forward(ctx, attn_mlp); |
|
|
|
output = ggml_add(ctx, x, ggml_mul(ctx, output, mod.gate)); |
|
return output; |
|
} |
|
}; |
|
|
|
struct LastLayer : public GGMLBlock { |
|
public: |
|
LastLayer(int64_t hidden_size, |
|
int64_t patch_size, |
|
int64_t out_channels) { |
|
blocks["norm_final"] = std::shared_ptr<GGMLBlock>(new LayerNorm(hidden_size, 1e-06f, false)); |
|
blocks["linear"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, patch_size * patch_size * out_channels)); |
|
blocks["adaLN_modulation.1"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_size, 2 * hidden_size)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* c) { |
|
|
|
|
|
|
|
auto norm_final = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_final"]); |
|
auto linear = std::dynamic_pointer_cast<Linear>(blocks["linear"]); |
|
auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]); |
|
|
|
auto m = adaLN_modulation_1->forward(ctx, ggml_silu(ctx, c)); |
|
m = ggml_reshape_3d(ctx, m, c->ne[0], 2, c->ne[1]); |
|
m = ggml_cont(ctx, ggml_permute(ctx, m, 0, 2, 1, 3)); |
|
|
|
int64_t offset = m->nb[1] * m->ne[1]; |
|
auto shift = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 0); |
|
auto scale = ggml_view_2d(ctx, m, m->ne[0], m->ne[1], m->nb[1], offset * 1); |
|
|
|
x = Flux::modulate(ctx, norm_final->forward(ctx, x), shift, scale); |
|
x = linear->forward(ctx, x); |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
struct FluxParams { |
|
int64_t in_channels = 64; |
|
int64_t vec_in_dim = 768; |
|
int64_t context_in_dim = 4096; |
|
int64_t hidden_size = 3072; |
|
float mlp_ratio = 4.0f; |
|
int64_t num_heads = 24; |
|
int64_t depth = 19; |
|
int64_t depth_single_blocks = 38; |
|
std::vector<int> axes_dim = {16, 56, 56}; |
|
int64_t axes_dim_sum = 128; |
|
int theta = 10000; |
|
bool qkv_bias = true; |
|
bool guidance_embed = true; |
|
bool flash_attn = true; |
|
}; |
|
|
|
struct Flux : public GGMLBlock { |
|
public: |
|
std::vector<float> linspace(float start, float end, int num) { |
|
std::vector<float> result(num); |
|
float step = (end - start) / (num - 1); |
|
for (int i = 0; i < num; ++i) { |
|
result[i] = start + i * step; |
|
} |
|
return result; |
|
} |
|
|
|
std::vector<std::vector<float>> transpose(const std::vector<std::vector<float>>& mat) { |
|
int rows = mat.size(); |
|
int cols = mat[0].size(); |
|
std::vector<std::vector<float>> transposed(cols, std::vector<float>(rows)); |
|
for (int i = 0; i < rows; ++i) { |
|
for (int j = 0; j < cols; ++j) { |
|
transposed[j][i] = mat[i][j]; |
|
} |
|
} |
|
return transposed; |
|
} |
|
|
|
std::vector<float> flatten(const std::vector<std::vector<float>>& vec) { |
|
std::vector<float> flat_vec; |
|
for (const auto& sub_vec : vec) { |
|
flat_vec.insert(flat_vec.end(), sub_vec.begin(), sub_vec.end()); |
|
} |
|
return flat_vec; |
|
} |
|
|
|
std::vector<std::vector<float>> rope(const std::vector<float>& pos, int dim, int theta) { |
|
assert(dim % 2 == 0); |
|
int half_dim = dim / 2; |
|
|
|
std::vector<float> scale = linspace(0, (dim * 1.0f - 2) / dim, half_dim); |
|
|
|
std::vector<float> omega(half_dim); |
|
for (int i = 0; i < half_dim; ++i) { |
|
omega[i] = 1.0 / std::pow(theta, scale[i]); |
|
} |
|
|
|
int pos_size = pos.size(); |
|
std::vector<std::vector<float>> out(pos_size, std::vector<float>(half_dim)); |
|
for (int i = 0; i < pos_size; ++i) { |
|
for (int j = 0; j < half_dim; ++j) { |
|
out[i][j] = pos[i] * omega[j]; |
|
} |
|
} |
|
|
|
std::vector<std::vector<float>> result(pos_size, std::vector<float>(half_dim * 4)); |
|
for (int i = 0; i < pos_size; ++i) { |
|
for (int j = 0; j < half_dim; ++j) { |
|
result[i][4 * j] = std::cos(out[i][j]); |
|
result[i][4 * j + 1] = -std::sin(out[i][j]); |
|
result[i][4 * j + 2] = std::sin(out[i][j]); |
|
result[i][4 * j + 3] = std::cos(out[i][j]); |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
std::vector<std::vector<float>> gen_ids(int h, int w, int patch_size, int bs, int context_len) { |
|
int h_len = (h + (patch_size / 2)) / patch_size; |
|
int w_len = (w + (patch_size / 2)) / patch_size; |
|
|
|
std::vector<std::vector<float>> img_ids(h_len * w_len, std::vector<float>(3, 0.0)); |
|
|
|
std::vector<float> row_ids = linspace(0, h_len - 1, h_len); |
|
std::vector<float> col_ids = linspace(0, w_len - 1, w_len); |
|
|
|
for (int i = 0; i < h_len; ++i) { |
|
for (int j = 0; j < w_len; ++j) { |
|
img_ids[i * w_len + j][1] = row_ids[i]; |
|
img_ids[i * w_len + j][2] = col_ids[j]; |
|
} |
|
} |
|
|
|
std::vector<std::vector<float>> img_ids_repeated(bs * img_ids.size(), std::vector<float>(3)); |
|
for (int i = 0; i < bs; ++i) { |
|
for (int j = 0; j < img_ids.size(); ++j) { |
|
img_ids_repeated[i * img_ids.size() + j] = img_ids[j]; |
|
} |
|
} |
|
|
|
std::vector<std::vector<float>> txt_ids(bs * context_len, std::vector<float>(3, 0.0)); |
|
std::vector<std::vector<float>> ids(bs * (context_len + img_ids.size()), std::vector<float>(3)); |
|
for (int i = 0; i < bs; ++i) { |
|
for (int j = 0; j < context_len; ++j) { |
|
ids[i * (context_len + img_ids.size()) + j] = txt_ids[j]; |
|
} |
|
for (int j = 0; j < img_ids.size(); ++j) { |
|
ids[i * (context_len + img_ids.size()) + context_len + j] = img_ids_repeated[i * img_ids.size() + j]; |
|
} |
|
} |
|
|
|
return ids; |
|
} |
|
|
|
|
|
std::vector<float> gen_pe(int h, int w, int patch_size, int bs, int context_len, int theta, const std::vector<int>& axes_dim) { |
|
std::vector<std::vector<float>> ids = gen_ids(h, w, patch_size, bs, context_len); |
|
std::vector<std::vector<float>> trans_ids = transpose(ids); |
|
size_t pos_len = ids.size(); |
|
int num_axes = axes_dim.size(); |
|
for (int i = 0; i < pos_len; i++) { |
|
|
|
} |
|
|
|
int emb_dim = 0; |
|
for (int d : axes_dim) |
|
emb_dim += d / 2; |
|
|
|
std::vector<std::vector<float>> emb(bs * pos_len, std::vector<float>(emb_dim * 2 * 2, 0.0)); |
|
int offset = 0; |
|
for (int i = 0; i < num_axes; ++i) { |
|
std::vector<std::vector<float>> rope_emb = rope(trans_ids[i], axes_dim[i], theta); |
|
for (int b = 0; b < bs; ++b) { |
|
for (int j = 0; j < pos_len; ++j) { |
|
for (int k = 0; k < rope_emb[0].size(); ++k) { |
|
emb[b * pos_len + j][offset + k] = rope_emb[j][k]; |
|
} |
|
} |
|
} |
|
offset += rope_emb[0].size(); |
|
} |
|
|
|
return flatten(emb); |
|
} |
|
|
|
public: |
|
FluxParams params; |
|
Flux() {} |
|
Flux(FluxParams params) |
|
: params(params) { |
|
int64_t out_channels = params.in_channels; |
|
int64_t pe_dim = params.hidden_size / params.num_heads; |
|
|
|
blocks["img_in"] = std::shared_ptr<GGMLBlock>(new Linear(params.in_channels, params.hidden_size, true)); |
|
blocks["time_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(256, params.hidden_size)); |
|
blocks["vector_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(params.vec_in_dim, params.hidden_size)); |
|
if (params.guidance_embed) { |
|
blocks["guidance_in"] = std::shared_ptr<GGMLBlock>(new MLPEmbedder(256, params.hidden_size)); |
|
} |
|
blocks["txt_in"] = std::shared_ptr<GGMLBlock>(new Linear(params.context_in_dim, params.hidden_size, true)); |
|
|
|
for (int i = 0; i < params.depth; i++) { |
|
blocks["double_blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new DoubleStreamBlock(params.hidden_size, |
|
params.num_heads, |
|
params.mlp_ratio, |
|
params.qkv_bias, |
|
params.flash_attn)); |
|
} |
|
|
|
for (int i = 0; i < params.depth_single_blocks; i++) { |
|
blocks["single_blocks." + std::to_string(i)] = std::shared_ptr<GGMLBlock>(new SingleStreamBlock(params.hidden_size, |
|
params.num_heads, |
|
params.mlp_ratio, |
|
0.f, |
|
params.flash_attn)); |
|
} |
|
|
|
blocks["final_layer"] = std::shared_ptr<GGMLBlock>(new LastLayer(params.hidden_size, 1, out_channels)); |
|
} |
|
|
|
struct ggml_tensor* patchify(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
int64_t patch_size) { |
|
|
|
|
|
int64_t N = x->ne[3]; |
|
int64_t C = x->ne[2]; |
|
int64_t H = x->ne[1]; |
|
int64_t W = x->ne[0]; |
|
int64_t p = patch_size; |
|
int64_t h = H / patch_size; |
|
int64_t w = W / patch_size; |
|
|
|
GGML_ASSERT(h * p == H && w * p == W); |
|
|
|
x = ggml_reshape_4d(ctx, x, p, w, p, h * C * N); |
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); |
|
x = ggml_reshape_4d(ctx, x, p * p, w * h, C, N); |
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); |
|
x = ggml_reshape_3d(ctx, x, p * p * C, w * h, N); |
|
return x; |
|
} |
|
|
|
struct ggml_tensor* unpatchify(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
int64_t h, |
|
int64_t w, |
|
int64_t patch_size) { |
|
|
|
|
|
int64_t N = x->ne[2]; |
|
int64_t C = x->ne[0] / patch_size / patch_size; |
|
int64_t H = h * patch_size; |
|
int64_t W = w * patch_size; |
|
int64_t p = patch_size; |
|
|
|
GGML_ASSERT(C * p * p == x->ne[0]); |
|
|
|
x = ggml_reshape_4d(ctx, x, p * p, C, w * h, N); |
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); |
|
x = ggml_reshape_4d(ctx, x, p, p, w, h * C * N); |
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); |
|
x = ggml_reshape_4d(ctx, x, W, H, C, N); |
|
|
|
return x; |
|
} |
|
|
|
struct ggml_tensor* forward_orig(struct ggml_context* ctx, |
|
struct ggml_tensor* img, |
|
struct ggml_tensor* txt, |
|
struct ggml_tensor* timesteps, |
|
struct ggml_tensor* y, |
|
struct ggml_tensor* guidance, |
|
struct ggml_tensor* pe, |
|
std::vector<int> skip_layers = std::vector<int>()) { |
|
auto img_in = std::dynamic_pointer_cast<Linear>(blocks["img_in"]); |
|
auto time_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["time_in"]); |
|
auto vector_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["vector_in"]); |
|
auto txt_in = std::dynamic_pointer_cast<Linear>(blocks["txt_in"]); |
|
auto final_layer = std::dynamic_pointer_cast<LastLayer>(blocks["final_layer"]); |
|
|
|
img = img_in->forward(ctx, img); |
|
auto vec = time_in->forward(ctx, ggml_nn_timestep_embedding(ctx, timesteps, 256, 10000, 1000.f)); |
|
|
|
if (params.guidance_embed) { |
|
GGML_ASSERT(guidance != NULL); |
|
auto guidance_in = std::dynamic_pointer_cast<MLPEmbedder>(blocks["guidance_in"]); |
|
|
|
auto g_in = ggml_nn_timestep_embedding(ctx, guidance, 256, 10000, 1000.f); |
|
vec = ggml_add(ctx, vec, guidance_in->forward(ctx, g_in)); |
|
} |
|
|
|
vec = ggml_add(ctx, vec, vector_in->forward(ctx, y)); |
|
txt = txt_in->forward(ctx, txt); |
|
|
|
for (int i = 0; i < params.depth; i++) { |
|
if (skip_layers.size() > 0 && std::find(skip_layers.begin(), skip_layers.end(), i) != skip_layers.end()) { |
|
continue; |
|
} |
|
|
|
auto block = std::dynamic_pointer_cast<DoubleStreamBlock>(blocks["double_blocks." + std::to_string(i)]); |
|
|
|
auto img_txt = block->forward(ctx, img, txt, vec, pe); |
|
img = img_txt.first; |
|
txt = img_txt.second; |
|
} |
|
|
|
auto txt_img = ggml_concat(ctx, txt, img, 1); |
|
for (int i = 0; i < params.depth_single_blocks; i++) { |
|
if (skip_layers.size() > 0 && std::find(skip_layers.begin(), skip_layers.end(), i + params.depth) != skip_layers.end()) { |
|
continue; |
|
} |
|
auto block = std::dynamic_pointer_cast<SingleStreamBlock>(blocks["single_blocks." + std::to_string(i)]); |
|
|
|
txt_img = block->forward(ctx, txt_img, vec, pe); |
|
} |
|
|
|
txt_img = ggml_cont(ctx, ggml_permute(ctx, txt_img, 0, 2, 1, 3)); |
|
img = ggml_view_3d(ctx, |
|
txt_img, |
|
txt_img->ne[0], |
|
txt_img->ne[1], |
|
img->ne[1], |
|
txt_img->nb[1], |
|
txt_img->nb[2], |
|
txt_img->nb[2] * txt->ne[1]); |
|
img = ggml_cont(ctx, ggml_permute(ctx, img, 0, 2, 1, 3)); |
|
|
|
img = final_layer->forward(ctx, img, vec); |
|
|
|
return img; |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* timestep, |
|
struct ggml_tensor* context, |
|
struct ggml_tensor* y, |
|
struct ggml_tensor* guidance, |
|
struct ggml_tensor* pe, |
|
std::vector<int> skip_layers = std::vector<int>()) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GGML_ASSERT(x->ne[3] == 1); |
|
|
|
int64_t W = x->ne[0]; |
|
int64_t H = x->ne[1]; |
|
int64_t patch_size = 2; |
|
int pad_h = (patch_size - H % patch_size) % patch_size; |
|
int pad_w = (patch_size - W % patch_size) % patch_size; |
|
x = ggml_pad(ctx, x, pad_w, pad_h, 0, 0); |
|
|
|
|
|
auto img = patchify(ctx, x, patch_size); |
|
|
|
auto out = forward_orig(ctx, img, context, timestep, y, guidance, pe, skip_layers); |
|
|
|
|
|
out = unpatchify(ctx, out, (H + pad_h) / patch_size, (W + pad_w) / patch_size, patch_size); |
|
|
|
return out; |
|
} |
|
}; |
|
|
|
struct FluxRunner : public GGMLRunner { |
|
static std::map<std::string, enum ggml_type> empty_tensor_types; |
|
|
|
public: |
|
FluxParams flux_params; |
|
Flux flux; |
|
std::vector<float> pe_vec; |
|
|
|
FluxRunner(ggml_backend_t backend, |
|
std::map<std::string, enum ggml_type>& tensor_types = empty_tensor_types, |
|
const std::string prefix = "", |
|
bool flash_attn = false) |
|
: GGMLRunner(backend) { |
|
flux_params.flash_attn = flash_attn; |
|
flux_params.guidance_embed = false; |
|
flux_params.depth = 0; |
|
flux_params.depth_single_blocks = 0; |
|
for (auto pair : tensor_types) { |
|
std::string tensor_name = pair.first; |
|
if (tensor_name.find("model.diffusion_model.") == std::string::npos) |
|
continue; |
|
if (tensor_name.find("guidance_in.in_layer.weight") != std::string::npos) { |
|
|
|
flux_params.guidance_embed = true; |
|
} |
|
size_t db = tensor_name.find("double_blocks."); |
|
if (db != std::string::npos) { |
|
tensor_name = tensor_name.substr(db); |
|
int block_depth = atoi(tensor_name.substr(14, tensor_name.find(".", 14)).c_str()); |
|
if (block_depth + 1 > flux_params.depth) { |
|
flux_params.depth = block_depth + 1; |
|
} |
|
} |
|
size_t sb = tensor_name.find("single_blocks."); |
|
if (sb != std::string::npos) { |
|
tensor_name = tensor_name.substr(sb); |
|
int block_depth = atoi(tensor_name.substr(14, tensor_name.find(".", 14)).c_str()); |
|
if (block_depth + 1 > flux_params.depth_single_blocks) { |
|
flux_params.depth_single_blocks = block_depth + 1; |
|
} |
|
} |
|
} |
|
|
|
LOG_INFO("Flux blocks: %d double, %d single", flux_params.depth, flux_params.depth_single_blocks); |
|
if (!flux_params.guidance_embed) { |
|
LOG_INFO("Flux guidance is disabled (Schnell mode)"); |
|
} |
|
|
|
flux = Flux(flux_params); |
|
flux.init(params_ctx, tensor_types, prefix); |
|
} |
|
|
|
std::string get_desc() { |
|
return "flux"; |
|
} |
|
|
|
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) { |
|
flux.get_param_tensors(tensors, prefix); |
|
} |
|
|
|
struct ggml_cgraph* build_graph(struct ggml_tensor* x, |
|
struct ggml_tensor* timesteps, |
|
struct ggml_tensor* context, |
|
struct ggml_tensor* y, |
|
struct ggml_tensor* guidance, |
|
std::vector<int> skip_layers = std::vector<int>()) { |
|
GGML_ASSERT(x->ne[3] == 1); |
|
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, FLUX_GRAPH_SIZE, false); |
|
|
|
x = to_backend(x); |
|
context = to_backend(context); |
|
y = to_backend(y); |
|
timesteps = to_backend(timesteps); |
|
if (flux_params.guidance_embed) { |
|
guidance = to_backend(guidance); |
|
} |
|
|
|
pe_vec = flux.gen_pe(x->ne[1], x->ne[0], 2, x->ne[3], context->ne[1], flux_params.theta, flux_params.axes_dim); |
|
int pos_len = pe_vec.size() / flux_params.axes_dim_sum / 2; |
|
|
|
auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, flux_params.axes_dim_sum / 2, pos_len); |
|
|
|
|
|
|
|
set_backend_tensor_data(pe, pe_vec.data()); |
|
|
|
struct ggml_tensor* out = flux.forward(compute_ctx, |
|
x, |
|
timesteps, |
|
context, |
|
y, |
|
guidance, |
|
pe, |
|
skip_layers); |
|
|
|
ggml_build_forward_expand(gf, out); |
|
|
|
return gf; |
|
} |
|
|
|
void compute(int n_threads, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* timesteps, |
|
struct ggml_tensor* context, |
|
struct ggml_tensor* y, |
|
struct ggml_tensor* guidance, |
|
struct ggml_tensor** output = NULL, |
|
struct ggml_context* output_ctx = NULL, |
|
std::vector<int> skip_layers = std::vector<int>()) { |
|
|
|
|
|
|
|
|
|
|
|
auto get_graph = [&]() -> struct ggml_cgraph* { |
|
return build_graph(x, timesteps, context, y, guidance, skip_layers); |
|
}; |
|
|
|
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx); |
|
} |
|
|
|
void test() { |
|
struct ggml_init_params params; |
|
params.mem_size = static_cast<size_t>(20 * 1024 * 1024); |
|
params.mem_buffer = NULL; |
|
params.no_alloc = false; |
|
|
|
struct ggml_context* work_ctx = ggml_init(params); |
|
GGML_ASSERT(work_ctx != NULL); |
|
|
|
{ |
|
|
|
|
|
|
|
auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 16, 16, 16, 1); |
|
ggml_set_f32(x, 0.01f); |
|
|
|
|
|
std::vector<float> timesteps_vec(1, 999.f); |
|
auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec); |
|
|
|
std::vector<float> guidance_vec(1, 3.5f); |
|
auto guidance = vector_to_ggml_tensor(work_ctx, guidance_vec); |
|
|
|
auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 4096, 256, 1); |
|
ggml_set_f32(context, 0.01f); |
|
|
|
|
|
auto y = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 768, 1); |
|
ggml_set_f32(y, 0.01f); |
|
|
|
|
|
struct ggml_tensor* out = NULL; |
|
|
|
int t0 = ggml_time_ms(); |
|
compute(8, x, timesteps, context, y, guidance, &out, work_ctx); |
|
int t1 = ggml_time_ms(); |
|
|
|
print_ggml_tensor(out); |
|
LOG_DEBUG("flux test done in %dms", t1 - t0); |
|
} |
|
} |
|
|
|
static void load_from_file_and_test(const std::string& file_path) { |
|
|
|
ggml_backend_t backend = ggml_backend_cpu_init(); |
|
ggml_type model_data_type = GGML_TYPE_Q8_0; |
|
std::shared_ptr<FluxRunner> flux = std::shared_ptr<FluxRunner>(new FluxRunner(backend)); |
|
{ |
|
LOG_INFO("loading from '%s'", file_path.c_str()); |
|
|
|
flux->alloc_params_buffer(); |
|
std::map<std::string, ggml_tensor*> tensors; |
|
flux->get_param_tensors(tensors, "model.diffusion_model"); |
|
|
|
ModelLoader model_loader; |
|
if (!model_loader.init_from_file(file_path, "model.diffusion_model.")) { |
|
LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str()); |
|
return; |
|
} |
|
|
|
bool success = model_loader.load_tensors(tensors, backend); |
|
|
|
if (!success) { |
|
LOG_ERROR("load tensors from model loader failed"); |
|
return; |
|
} |
|
|
|
LOG_INFO("flux model loaded"); |
|
} |
|
flux->test(); |
|
} |
|
}; |
|
|
|
} |
|
|
|
#endif |
|
|