Darkknight535's picture
Upload folder using huggingface_hub
1d30d42 verified
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <random>
#include <string>
#include <vector>
// #include "preprocessing.hpp"
#include "flux.hpp"
#include "stable-diffusion.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#define STB_IMAGE_WRITE_STATIC
#include "stb_image_write.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "stb_image_resize.h"
const char* rng_type_to_str[] = {
"std_default",
"cuda",
};
// Names of the sampler method, same order as enum sample_method in stable-diffusion.h
const char* sample_method_str[] = {
"euler_a",
"euler",
"heun",
"dpm2",
"dpm++2s_a",
"dpm++2m",
"dpm++2mv2",
"ipndm",
"ipndm_v",
"lcm",
};
// Names of the sigma schedule overrides, same order as sample_schedule in stable-diffusion.h
const char* schedule_str[] = {
"default",
"discrete",
"karras",
"exponential",
"ays",
"gits",
};
const char* modes_str[] = {
"txt2img",
"img2img",
"img2vid",
"convert",
};
enum SDMode {
TXT2IMG,
IMG2IMG,
IMG2VID,
CONVERT,
MODE_COUNT
};
struct SDParams {
int n_threads = -1;
SDMode mode = TXT2IMG;
std::string model_path;
std::string clip_l_path;
std::string clip_g_path;
std::string t5xxl_path;
std::string diffusion_model_path;
std::string vae_path;
std::string taesd_path;
std::string esrgan_path;
std::string controlnet_path;
std::string embeddings_path;
std::string stacked_id_embeddings_path;
std::string input_id_images_path;
sd_type_t wtype = SD_TYPE_COUNT;
std::string lora_model_dir;
std::string output_path = "output.png";
std::string input_path;
std::string control_image_path;
std::string prompt;
std::string negative_prompt;
float min_cfg = 1.0f;
float cfg_scale = 7.0f;
float guidance = 3.5f;
float style_ratio = 20.f;
int clip_skip = -1; // <= 0 represents unspecified
int width = 512;
int height = 512;
int batch_count = 1;
int video_frames = 6;
int motion_bucket_id = 127;
int fps = 6;
float augmentation_level = 0.f;
sample_method_t sample_method = EULER_A;
schedule_t schedule = DEFAULT;
int sample_steps = 20;
float strength = 0.75f;
float control_strength = 0.9f;
rng_type_t rng_type = CUDA_RNG;
int64_t seed = 42;
bool verbose = false;
bool vae_tiling = false;
bool control_net_cpu = false;
bool normalize_input = false;
bool clip_on_cpu = false;
bool vae_on_cpu = false;
bool diffusion_flash_attn = false;
bool canny_preprocess = false;
bool color = false;
int upscale_repeats = 1;
std::vector<int> skip_layers = {7, 8, 9};
float slg_scale = 0.;
float skip_layer_start = 0.01;
float skip_layer_end = 0.2;
};
void print_params(SDParams params) {
printf("Option: \n");
printf(" n_threads: %d\n", params.n_threads);
printf(" mode: %s\n", modes_str[params.mode]);
printf(" model_path: %s\n", params.model_path.c_str());
printf(" wtype: %s\n", params.wtype < SD_TYPE_COUNT ? sd_type_name(params.wtype) : "unspecified");
printf(" clip_l_path: %s\n", params.clip_l_path.c_str());
printf(" clip_g_path: %s\n", params.clip_g_path.c_str());
printf(" t5xxl_path: %s\n", params.t5xxl_path.c_str());
printf(" diffusion_model_path: %s\n", params.diffusion_model_path.c_str());
printf(" vae_path: %s\n", params.vae_path.c_str());
printf(" taesd_path: %s\n", params.taesd_path.c_str());
printf(" esrgan_path: %s\n", params.esrgan_path.c_str());
printf(" controlnet_path: %s\n", params.controlnet_path.c_str());
printf(" embeddings_path: %s\n", params.embeddings_path.c_str());
printf(" stacked_id_embeddings_path: %s\n", params.stacked_id_embeddings_path.c_str());
printf(" input_id_images_path: %s\n", params.input_id_images_path.c_str());
printf(" style ratio: %.2f\n", params.style_ratio);
printf(" normalize input image : %s\n", params.normalize_input ? "true" : "false");
printf(" output_path: %s\n", params.output_path.c_str());
printf(" init_img: %s\n", params.input_path.c_str());
printf(" control_image: %s\n", params.control_image_path.c_str());
printf(" clip on cpu: %s\n", params.clip_on_cpu ? "true" : "false");
printf(" controlnet cpu: %s\n", params.control_net_cpu ? "true" : "false");
printf(" vae decoder on cpu:%s\n", params.vae_on_cpu ? "true" : "false");
printf(" diffusion flash attention:%s\n", params.diffusion_flash_attn ? "true" : "false");
printf(" strength(control): %.2f\n", params.control_strength);
printf(" prompt: %s\n", params.prompt.c_str());
printf(" negative_prompt: %s\n", params.negative_prompt.c_str());
printf(" min_cfg: %.2f\n", params.min_cfg);
printf(" cfg_scale: %.2f\n", params.cfg_scale);
printf(" slg_scale: %.2f\n", params.slg_scale);
printf(" guidance: %.2f\n", params.guidance);
printf(" clip_skip: %d\n", params.clip_skip);
printf(" width: %d\n", params.width);
printf(" height: %d\n", params.height);
printf(" sample_method: %s\n", sample_method_str[params.sample_method]);
printf(" schedule: %s\n", schedule_str[params.schedule]);
printf(" sample_steps: %d\n", params.sample_steps);
printf(" strength(img2img): %.2f\n", params.strength);
printf(" rng: %s\n", rng_type_to_str[params.rng_type]);
printf(" seed: %ld\n", params.seed);
printf(" batch_count: %d\n", params.batch_count);
printf(" vae_tiling: %s\n", params.vae_tiling ? "true" : "false");
printf(" upscale_repeats: %d\n", params.upscale_repeats);
}
void print_usage(int argc, const char* argv[]) {
printf("usage: %s [arguments]\n", argv[0]);
printf("\n");
printf("arguments:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -M, --mode [MODEL] run mode (txt2img or img2img or convert, default: txt2img)\n");
printf(" -t, --threads N number of threads to use during computation (default: -1)\n");
printf(" If threads <= 0, then threads will be set to the number of CPU physical cores\n");
printf(" -m, --model [MODEL] path to full model\n");
printf(" --diffusion-model path to the standalone diffusion model\n");
printf(" --clip_l path to the clip-l text encoder\n");
printf(" --clip_g path to the clip-g text encoder\n");
printf(" --t5xxl path to the the t5xxl text encoder\n");
printf(" --vae [VAE] path to vae\n");
printf(" --taesd [TAESD_PATH] path to taesd. Using Tiny AutoEncoder for fast decoding (low quality)\n");
printf(" --control-net [CONTROL_PATH] path to control net model\n");
printf(" --embd-dir [EMBEDDING_PATH] path to embeddings\n");
printf(" --stacked-id-embd-dir [DIR] path to PHOTOMAKER stacked id embeddings\n");
printf(" --input-id-images-dir [DIR] path to PHOTOMAKER input id images dir\n");
printf(" --normalize-input normalize PHOTOMAKER input id images\n");
printf(" --upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now\n");
printf(" --upscale-repeats Run the ESRGAN upscaler this many times (default 1)\n");
printf(" --type [TYPE] weight type (examples: f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_K, q3_K, q4_K)\n");
printf(" If not specified, the default is the type of the weight file\n");
printf(" --lora-model-dir [DIR] lora model directory\n");
printf(" -i, --init-img [IMAGE] path to the input image, required by img2img\n");
printf(" --control-image [IMAGE] path to image condition, control net\n");
printf(" -o, --output OUTPUT path to write result image to (default: ./output.png)\n");
printf(" -p, --prompt [PROMPT] the prompt to render\n");
printf(" -n, --negative-prompt PROMPT the negative prompt (default: \"\")\n");
printf(" --cfg-scale SCALE unconditional guidance scale: (default: 7.0)\n");
printf(" --slg-scale SCALE skip layer guidance (SLG) scale, only for DiT models: (default: 0)\n");
printf(" 0 means disabled, a value of 2.5 is nice for sd3.5 medium\n");
printf(" --skip_layers LAYERS Layers to skip for SLG steps: (default: [7,8,9])\n");
printf(" --skip_layer_start START SLG enabling point: (default: 0.01)\n");
printf(" --skip_layer_end END SLG disabling point: (default: 0.2)\n");
printf(" SLG will be enabled at step int([STEPS]*[START]) and disabled at int([STEPS]*[END])\n");
printf(" --strength STRENGTH strength for noising/unnoising (default: 0.75)\n");
printf(" --style-ratio STYLE-RATIO strength for keeping input identity (default: 20%%)\n");
printf(" --control-strength STRENGTH strength to apply Control Net (default: 0.9)\n");
printf(" 1.0 corresponds to full destruction of information in init image\n");
printf(" -H, --height H image height, in pixel space (default: 512)\n");
printf(" -W, --width W image width, in pixel space (default: 512)\n");
printf(" --sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm}\n");
printf(" sampling method (default: \"euler_a\")\n");
printf(" --steps STEPS number of sample steps (default: 20)\n");
printf(" --rng {std_default, cuda} RNG (default: cuda)\n");
printf(" -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)\n");
printf(" -b, --batch-count COUNT number of images to generate\n");
printf(" --schedule {discrete, karras, exponential, ays, gits} Denoiser sigma schedule (default: discrete)\n");
printf(" --clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1)\n");
printf(" <= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x\n");
printf(" --vae-tiling process vae in tiles to reduce memory usage\n");
printf(" --vae-on-cpu keep vae in cpu (for low vram)\n");
printf(" --clip-on-cpu keep clip in cpu (for low vram)\n");
printf(" --diffusion-fa use flash attention in the diffusion model (for low vram)\n");
printf(" Might lower quality, since it implies converting k and v to f16.\n");
printf(" This might crash if it is not supported by the backend.\n");
printf(" --control-net-cpu keep controlnet in cpu (for low vram)\n");
printf(" --canny apply canny preprocessor (edge detection)\n");
printf(" --color Colors the logging tags according to level\n");
printf(" -v, --verbose print extra info\n");
}
void parse_args(int argc, const char** argv, SDParams& params) {
bool invalid_arg = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.n_threads = std::stoi(argv[i]);
} else if (arg == "-M" || arg == "--mode") {
if (++i >= argc) {
invalid_arg = true;
break;
}
const char* mode_selected = argv[i];
int mode_found = -1;
for (int d = 0; d < MODE_COUNT; d++) {
if (!strcmp(mode_selected, modes_str[d])) {
mode_found = d;
}
}
if (mode_found == -1) {
fprintf(stderr,
"error: invalid mode %s, must be one of [txt2img, img2img, img2vid, convert]\n",
mode_selected);
exit(1);
}
params.mode = (SDMode)mode_found;
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.model_path = argv[i];
} else if (arg == "--clip_l") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.clip_l_path = argv[i];
} else if (arg == "--clip_g") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.clip_g_path = argv[i];
} else if (arg == "--t5xxl") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.t5xxl_path = argv[i];
} else if (arg == "--diffusion-model") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.diffusion_model_path = argv[i];
} else if (arg == "--vae") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.vae_path = argv[i];
} else if (arg == "--taesd") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.taesd_path = argv[i];
} else if (arg == "--control-net") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.controlnet_path = argv[i];
} else if (arg == "--upscale-model") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.esrgan_path = argv[i];
} else if (arg == "--embd-dir") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.embeddings_path = argv[i];
} else if (arg == "--stacked-id-embd-dir") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.stacked_id_embeddings_path = argv[i];
} else if (arg == "--input-id-images-dir") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.input_id_images_path = argv[i];
} else if (arg == "--type") {
if (++i >= argc) {
invalid_arg = true;
break;
}
std::string type = argv[i];
bool found = false;
std::string valid_types = "";
for (size_t i = 0; i < SD_TYPE_COUNT; i++) {
auto trait = ggml_get_type_traits((ggml_type)i);
std::string name(trait->type_name);
if (name == "f32" || trait->to_float && trait->type_size) {
if (i)
valid_types += ", ";
valid_types += name;
if (type == name) {
if (ggml_quantize_requires_imatrix((ggml_type)i)) {
printf("\033[35;1m[WARNING]\033[0m: type %s requires imatrix to work properly. A dummy imatrix will be used, expect poor quality.\n", trait->type_name);
}
params.wtype = (enum sd_type_t)i;
found = true;
break;
}
}
}
if (!found) {
fprintf(stderr, "error: invalid weight format %s, must be one of [%s]\n",
type.c_str(),
valid_types.c_str());
exit(1);
}
} else if (arg == "--lora-model-dir") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.lora_model_dir = argv[i];
} else if (arg == "-i" || arg == "--init-img") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.input_path = argv[i];
} else if (arg == "--control-image") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.control_image_path = argv[i];
} else if (arg == "-o" || arg == "--output") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.output_path = argv[i];
} else if (arg == "-p" || arg == "--prompt") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.prompt = argv[i];
} else if (arg == "--upscale-repeats") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.upscale_repeats = std::stoi(argv[i]);
if (params.upscale_repeats < 1) {
fprintf(stderr, "error: upscale multiplier must be at least 1\n");
exit(1);
}
} else if (arg == "-n" || arg == "--negative-prompt") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.negative_prompt = argv[i];
} else if (arg == "--cfg-scale") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.cfg_scale = std::stof(argv[i]);
} else if (arg == "--guidance") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.guidance = std::stof(argv[i]);
} else if (arg == "--strength") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.strength = std::stof(argv[i]);
} else if (arg == "--style-ratio") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.style_ratio = std::stof(argv[i]);
} else if (arg == "--control-strength") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.control_strength = std::stof(argv[i]);
} else if (arg == "-H" || arg == "--height") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.height = std::stoi(argv[i]);
} else if (arg == "-W" || arg == "--width") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.width = std::stoi(argv[i]);
} else if (arg == "--steps") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.sample_steps = std::stoi(argv[i]);
} else if (arg == "--clip-skip") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.clip_skip = std::stoi(argv[i]);
} else if (arg == "--vae-tiling") {
params.vae_tiling = true;
} else if (arg == "--control-net-cpu") {
params.control_net_cpu = true;
} else if (arg == "--normalize-input") {
params.normalize_input = true;
} else if (arg == "--clip-on-cpu") {
params.clip_on_cpu = true; // will slow down get_learned_condiotion but necessary for low MEM GPUs
} else if (arg == "--vae-on-cpu") {
params.vae_on_cpu = true; // will slow down latent decoding but necessary for low MEM GPUs
} else if (arg == "--diffusion-fa") {
params.diffusion_flash_attn = true; // can reduce MEM significantly
} else if (arg == "--canny") {
params.canny_preprocess = true;
} else if (arg == "-b" || arg == "--batch-count") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.batch_count = std::stoi(argv[i]);
} else if (arg == "--rng") {
if (++i >= argc) {
invalid_arg = true;
break;
}
std::string rng_type_str = argv[i];
if (rng_type_str == "std_default") {
params.rng_type = STD_DEFAULT_RNG;
} else if (rng_type_str == "cuda") {
params.rng_type = CUDA_RNG;
} else {
invalid_arg = true;
break;
}
} else if (arg == "--schedule") {
if (++i >= argc) {
invalid_arg = true;
break;
}
const char* schedule_selected = argv[i];
int schedule_found = -1;
for (int d = 0; d < N_SCHEDULES; d++) {
if (!strcmp(schedule_selected, schedule_str[d])) {
schedule_found = d;
}
}
if (schedule_found == -1) {
invalid_arg = true;
break;
}
params.schedule = (schedule_t)schedule_found;
} else if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.seed = std::stoll(argv[i]);
} else if (arg == "--sampling-method") {
if (++i >= argc) {
invalid_arg = true;
break;
}
const char* sample_method_selected = argv[i];
int sample_method_found = -1;
for (int m = 0; m < N_SAMPLE_METHODS; m++) {
if (!strcmp(sample_method_selected, sample_method_str[m])) {
sample_method_found = m;
}
}
if (sample_method_found == -1) {
invalid_arg = true;
break;
}
params.sample_method = (sample_method_t)sample_method_found;
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv);
exit(0);
} else if (arg == "-v" || arg == "--verbose") {
params.verbose = true;
} else if (arg == "--color") {
params.color = true;
} else if (arg == "--slg-scale") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.slg_scale = std::stof(argv[i]);
} else if (arg == "--skip-layers") {
if (++i >= argc) {
invalid_arg = true;
break;
}
if (argv[i][0] != '[') {
invalid_arg = true;
break;
}
std::string layers_str = argv[i];
while (layers_str.back() != ']') {
if (++i >= argc) {
invalid_arg = true;
break;
}
layers_str += " " + std::string(argv[i]);
}
layers_str = layers_str.substr(1, layers_str.size() - 2);
std::regex regex("[, ]+");
std::sregex_token_iterator iter(layers_str.begin(), layers_str.end(), regex, -1);
std::sregex_token_iterator end;
std::vector<std::string> tokens(iter, end);
std::vector<int> layers;
for (const auto& token : tokens) {
try {
layers.push_back(std::stoi(token));
} catch (const std::invalid_argument& e) {
invalid_arg = true;
break;
}
}
params.skip_layers = layers;
if (invalid_arg) {
break;
}
} else if (arg == "--skip-layer-start") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.skip_layer_start = std::stof(argv[i]);
} else if (arg == "--skip-layer-end") {
if (++i >= argc) {
invalid_arg = true;
break;
}
params.skip_layer_end = std::stof(argv[i]);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
print_usage(argc, argv);
exit(1);
}
}
if (invalid_arg) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv);
exit(1);
}
if (params.n_threads <= 0) {
params.n_threads = sd_get_num_physical_cores();
}
if (params.mode != CONVERT && params.mode != IMG2VID && params.prompt.length() == 0) {
fprintf(stderr, "error: the following arguments are required: prompt\n");
print_usage(argc, argv);
exit(1);
}
if (params.model_path.length() == 0 && params.diffusion_model_path.length() == 0) {
fprintf(stderr, "error: the following arguments are required: model_path/diffusion_model\n");
print_usage(argc, argv);
exit(1);
}
if ((params.mode == IMG2IMG || params.mode == IMG2VID) && params.input_path.length() == 0) {
fprintf(stderr, "error: when using the img2img mode, the following arguments are required: init-img\n");
print_usage(argc, argv);
exit(1);
}
if (params.output_path.length() == 0) {
fprintf(stderr, "error: the following arguments are required: output_path\n");
print_usage(argc, argv);
exit(1);
}
if (params.width <= 0 || params.width % 64 != 0) {
fprintf(stderr, "error: the width must be a multiple of 64\n");
exit(1);
}
if (params.height <= 0 || params.height % 64 != 0) {
fprintf(stderr, "error: the height must be a multiple of 64\n");
exit(1);
}
if (params.sample_steps <= 0) {
fprintf(stderr, "error: the sample_steps must be greater than 0\n");
exit(1);
}
if (params.strength < 0.f || params.strength > 1.f) {
fprintf(stderr, "error: can only work with strength in [0.0, 1.0]\n");
exit(1);
}
if (params.seed < 0) {
srand((int)time(NULL));
params.seed = rand();
}
if (params.mode == CONVERT) {
if (params.output_path == "output.png") {
params.output_path = "output.gguf";
}
}
}
static std::string sd_basename(const std::string& path) {
size_t pos = path.find_last_of('/');
if (pos != std::string::npos) {
return path.substr(pos + 1);
}
pos = path.find_last_of('\\');
if (pos != std::string::npos) {
return path.substr(pos + 1);
}
return path;
}
std::string get_image_params(SDParams params, int64_t seed) {
std::string parameter_string = params.prompt + "\n";
if (params.negative_prompt.size() != 0) {
parameter_string += "Negative prompt: " + params.negative_prompt + "\n";
}
parameter_string += "Steps: " + std::to_string(params.sample_steps) + ", ";
parameter_string += "CFG scale: " + std::to_string(params.cfg_scale) + ", ";
if (params.slg_scale != 0 && params.skip_layers.size() != 0) {
parameter_string += "SLG scale: " + std::to_string(params.cfg_scale) + ", ";
parameter_string += "Skip layers: [";
for (const auto& layer : params.skip_layers) {
parameter_string += std::to_string(layer) + ", ";
}
parameter_string += "], ";
parameter_string += "Skip layer start: " + std::to_string(params.skip_layer_start) + ", ";
parameter_string += "Skip layer end: " + std::to_string(params.skip_layer_end) + ", ";
}
parameter_string += "Guidance: " + std::to_string(params.guidance) + ", ";
parameter_string += "Seed: " + std::to_string(seed) + ", ";
parameter_string += "Size: " + std::to_string(params.width) + "x" + std::to_string(params.height) + ", ";
parameter_string += "Model: " + sd_basename(params.model_path) + ", ";
parameter_string += "RNG: " + std::string(rng_type_to_str[params.rng_type]) + ", ";
parameter_string += "Sampler: " + std::string(sample_method_str[params.sample_method]);
if (params.schedule == KARRAS) {
parameter_string += " karras";
}
parameter_string += ", ";
parameter_string += "Version: stable-diffusion.cpp";
return parameter_string;
}
/* Enables Printing the log level tag in color using ANSI escape codes */
void sd_log_cb(enum sd_log_level_t level, const char* log, void* data) {
SDParams* params = (SDParams*)data;
int tag_color;
const char* level_str;
FILE* out_stream = (level == SD_LOG_ERROR) ? stderr : stdout;
if (!log || (!params->verbose && level <= SD_LOG_DEBUG)) {
return;
}
switch (level) {
case SD_LOG_DEBUG:
tag_color = 37;
level_str = "DEBUG";
break;
case SD_LOG_INFO:
tag_color = 34;
level_str = "INFO";
break;
case SD_LOG_WARN:
tag_color = 35;
level_str = "WARN";
break;
case SD_LOG_ERROR:
tag_color = 31;
level_str = "ERROR";
break;
default: /* Potential future-proofing */
tag_color = 33;
level_str = "?????";
break;
}
if (params->color == true) {
fprintf(out_stream, "\033[%d;1m[%-5s]\033[0m ", tag_color, level_str);
} else {
fprintf(out_stream, "[%-5s] ", level_str);
}
fputs(log, out_stream);
fflush(out_stream);
}
int main(int argc, const char* argv[]) {
SDParams params;
parse_args(argc, argv, params);
sd_set_log_callback(sd_log_cb, (void*)&params);
if (params.verbose) {
print_params(params);
printf("%s", sd_get_system_info());
}
if (params.mode == CONVERT) {
bool success = convert(params.model_path.c_str(), params.vae_path.c_str(), params.output_path.c_str(), params.wtype);
if (!success) {
fprintf(stderr,
"convert '%s'/'%s' to '%s' failed\n",
params.model_path.c_str(),
params.vae_path.c_str(),
params.output_path.c_str());
return 1;
} else {
printf("convert '%s'/'%s' to '%s' success\n",
params.model_path.c_str(),
params.vae_path.c_str(),
params.output_path.c_str());
return 0;
}
}
if (params.mode == IMG2VID) {
fprintf(stderr, "SVD support is broken, do not use it!!!\n");
return 1;
}
bool vae_decode_only = true;
uint8_t* input_image_buffer = NULL;
uint8_t* control_image_buffer = NULL;
if (params.mode == IMG2IMG || params.mode == IMG2VID) {
vae_decode_only = false;
int c = 0;
int width = 0;
int height = 0;
input_image_buffer = stbi_load(params.input_path.c_str(), &width, &height, &c, 3);
if (input_image_buffer == NULL) {
fprintf(stderr, "load image from '%s' failed\n", params.input_path.c_str());
return 1;
}
if (c < 3) {
fprintf(stderr, "the number of channels for the input image must be >= 3, but got %d channels\n", c);
free(input_image_buffer);
return 1;
}
if (width <= 0) {
fprintf(stderr, "error: the width of image must be greater than 0\n");
free(input_image_buffer);
return 1;
}
if (height <= 0) {
fprintf(stderr, "error: the height of image must be greater than 0\n");
free(input_image_buffer);
return 1;
}
// Resize input image ...
if (params.height != height || params.width != width) {
printf("resize input image from %dx%d to %dx%d\n", width, height, params.width, params.height);
int resized_height = params.height;
int resized_width = params.width;
uint8_t* resized_image_buffer = (uint8_t*)malloc(resized_height * resized_width * 3);
if (resized_image_buffer == NULL) {
fprintf(stderr, "error: allocate memory for resize input image\n");
free(input_image_buffer);
return 1;
}
stbir_resize(input_image_buffer, width, height, 0,
resized_image_buffer, resized_width, resized_height, 0, STBIR_TYPE_UINT8,
3 /*RGB channel*/, STBIR_ALPHA_CHANNEL_NONE, 0,
STBIR_EDGE_CLAMP, STBIR_EDGE_CLAMP,
STBIR_FILTER_BOX, STBIR_FILTER_BOX,
STBIR_COLORSPACE_SRGB, nullptr);
// Save resized result
free(input_image_buffer);
input_image_buffer = resized_image_buffer;
}
}
sd_ctx_t* sd_ctx = new_sd_ctx(params.model_path.c_str(),
params.clip_l_path.c_str(),
params.clip_g_path.c_str(),
params.t5xxl_path.c_str(),
params.diffusion_model_path.c_str(),
params.vae_path.c_str(),
params.taesd_path.c_str(),
params.controlnet_path.c_str(),
params.lora_model_dir.c_str(),
params.embeddings_path.c_str(),
params.stacked_id_embeddings_path.c_str(),
vae_decode_only,
params.vae_tiling,
true,
params.n_threads,
params.wtype,
params.rng_type,
params.schedule,
params.clip_on_cpu,
params.control_net_cpu,
params.vae_on_cpu,
params.diffusion_flash_attn);
if (sd_ctx == NULL) {
printf("new_sd_ctx_t failed\n");
return 1;
}
sd_image_t* control_image = NULL;
if (params.controlnet_path.size() > 0 && params.control_image_path.size() > 0) {
int c = 0;
control_image_buffer = stbi_load(params.control_image_path.c_str(), &params.width, &params.height, &c, 3);
if (control_image_buffer == NULL) {
fprintf(stderr, "load image from '%s' failed\n", params.control_image_path.c_str());
return 1;
}
control_image = new sd_image_t{(uint32_t)params.width,
(uint32_t)params.height,
3,
control_image_buffer};
if (params.canny_preprocess) { // apply preprocessor
control_image->data = preprocess_canny(control_image->data,
control_image->width,
control_image->height,
0.08f,
0.08f,
0.8f,
1.0f,
false);
}
}
sd_image_t* results;
if (params.mode == TXT2IMG) {
results = txt2img(sd_ctx,
params.prompt.c_str(),
params.negative_prompt.c_str(),
params.clip_skip,
params.cfg_scale,
params.guidance,
params.width,
params.height,
params.sample_method,
params.sample_steps,
params.seed,
params.batch_count,
control_image,
params.control_strength,
params.style_ratio,
params.normalize_input,
params.input_id_images_path.c_str(),
params.skip_layers.data(),
params.skip_layers.size(),
params.slg_scale,
params.skip_layer_start,
params.skip_layer_end);
} else {
sd_image_t input_image = {(uint32_t)params.width,
(uint32_t)params.height,
3,
input_image_buffer};
if (params.mode == IMG2VID) {
results = img2vid(sd_ctx,
input_image,
params.width,
params.height,
params.video_frames,
params.motion_bucket_id,
params.fps,
params.augmentation_level,
params.min_cfg,
params.cfg_scale,
params.sample_method,
params.sample_steps,
params.strength,
params.seed);
if (results == NULL) {
printf("generate failed\n");
free_sd_ctx(sd_ctx);
return 1;
}
size_t last = params.output_path.find_last_of(".");
std::string dummy_name = last != std::string::npos ? params.output_path.substr(0, last) : params.output_path;
for (int i = 0; i < params.video_frames; i++) {
if (results[i].data == NULL) {
continue;
}
std::string final_image_path = i > 0 ? dummy_name + "_" + std::to_string(i + 1) + ".png" : dummy_name + ".png";
stbi_write_png(final_image_path.c_str(), results[i].width, results[i].height, results[i].channel,
results[i].data, 0, get_image_params(params, params.seed + i).c_str());
printf("save result image to '%s'\n", final_image_path.c_str());
free(results[i].data);
results[i].data = NULL;
}
free(results);
free_sd_ctx(sd_ctx);
return 0;
} else {
results = img2img(sd_ctx,
input_image,
params.prompt.c_str(),
params.negative_prompt.c_str(),
params.clip_skip,
params.cfg_scale,
params.guidance,
params.width,
params.height,
params.sample_method,
params.sample_steps,
params.strength,
params.seed,
params.batch_count,
control_image,
params.control_strength,
params.style_ratio,
params.normalize_input,
params.input_id_images_path.c_str(),
params.skip_layers.data(),
params.skip_layers.size(),
params.slg_scale,
params.skip_layer_start,
params.skip_layer_end);
}
}
if (results == NULL) {
printf("generate failed\n");
free_sd_ctx(sd_ctx);
return 1;
}
int upscale_factor = 4; // unused for RealESRGAN_x4plus_anime_6B.pth
if (params.esrgan_path.size() > 0 && params.upscale_repeats > 0) {
upscaler_ctx_t* upscaler_ctx = new_upscaler_ctx(params.esrgan_path.c_str(),
params.n_threads);
if (upscaler_ctx == NULL) {
printf("new_upscaler_ctx failed\n");
} else {
for (int i = 0; i < params.batch_count; i++) {
if (results[i].data == NULL) {
continue;
}
sd_image_t current_image = results[i];
for (int u = 0; u < params.upscale_repeats; ++u) {
sd_image_t upscaled_image = upscale(upscaler_ctx, current_image, upscale_factor);
if (upscaled_image.data == NULL) {
printf("upscale failed\n");
break;
}
free(current_image.data);
current_image = upscaled_image;
}
results[i] = current_image; // Set the final upscaled image as the result
}
}
}
size_t last = params.output_path.find_last_of(".");
std::string dummy_name = last != std::string::npos ? params.output_path.substr(0, last) : params.output_path;
for (int i = 0; i < params.batch_count; i++) {
if (results[i].data == NULL) {
continue;
}
std::string final_image_path = i > 0 ? dummy_name + "_" + std::to_string(i + 1) + ".png" : dummy_name + ".png";
stbi_write_png(final_image_path.c_str(), results[i].width, results[i].height, results[i].channel,
results[i].data, 0, get_image_params(params, params.seed + i).c_str());
printf("save result image to '%s'\n", final_image_path.c_str());
free(results[i].data);
results[i].data = NULL;
}
free(results);
free_sd_ctx(sd_ctx);
free(control_image_buffer);
free(input_image_buffer);
return 0;
}