|
#ifndef __PMI_HPP__ |
|
#define __PMI_HPP__ |
|
|
|
#include "ggml_extend.hpp" |
|
|
|
#include "clip.hpp" |
|
#include "lora.hpp" |
|
|
|
struct FuseBlock : public GGMLBlock { |
|
|
|
int in_dim; |
|
int out_dim; |
|
int hidden_dim; |
|
bool use_residue; |
|
|
|
public: |
|
FuseBlock(int i_d, int o_d, int h_d, bool use_residue = true) |
|
: in_dim(i_d), out_dim(o_d), hidden_dim(h_d), use_residue(use_residue) { |
|
blocks["fc1"] = std::shared_ptr<GGMLBlock>(new Linear(in_dim, hidden_dim, true)); |
|
blocks["fc2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_dim, out_dim, true)); |
|
blocks["layernorm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(in_dim)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
|
|
|
|
auto fc1 = std::dynamic_pointer_cast<Linear>(blocks["fc1"]); |
|
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]); |
|
auto layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["layernorm"]); |
|
|
|
struct ggml_tensor* r = x; |
|
|
|
x = layer_norm->forward(ctx, x); |
|
|
|
x = fc1->forward(ctx, x); |
|
x = ggml_gelu_inplace(ctx, x); |
|
x = fc2->forward(ctx, x); |
|
|
|
if (use_residue) |
|
x = ggml_add(ctx, x, r); |
|
return x; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct PMFeedForward : public GGMLBlock { |
|
|
|
int dim; |
|
|
|
public: |
|
PMFeedForward(int d, int multi = 4) |
|
: dim(d) { |
|
int inner_dim = dim * multi; |
|
blocks["0"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim)); |
|
blocks["1"] = std::shared_ptr<GGMLBlock>(new Mlp(dim, inner_dim, dim, false)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* x) { |
|
auto norm = std::dynamic_pointer_cast<LayerNorm>(blocks["0"]); |
|
auto ff = std::dynamic_pointer_cast<Mlp>(blocks["1"]); |
|
|
|
x = norm->forward(ctx, x); |
|
x = ff->forward(ctx, x); |
|
return x; |
|
} |
|
}; |
|
|
|
struct PerceiverAttention : public GGMLBlock { |
|
|
|
float scale; |
|
int dim_head; |
|
int heads; |
|
public: |
|
PerceiverAttention(int dim, int dim_h = 64, int h = 8) |
|
: scale(powf(dim_h, -0.5)), dim_head(dim_h), heads(h) { |
|
int inner_dim = dim_head * heads; |
|
blocks["norm1"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim)); |
|
blocks["norm2"] = std::shared_ptr<GGMLBlock>(new LayerNorm(dim)); |
|
blocks["to_q"] = std::shared_ptr<GGMLBlock>(new Linear(dim, inner_dim, false)); |
|
blocks["to_kv"] = std::shared_ptr<GGMLBlock>(new Linear(dim, inner_dim * 2, false)); |
|
blocks["to_out"] = std::shared_ptr<GGMLBlock>(new Linear(inner_dim, dim, false)); |
|
} |
|
|
|
struct ggml_tensor* reshape_tensor(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
int heads) { |
|
int64_t ne[4]; |
|
for (int i = 0; i < 4; ++i) |
|
ne[i] = x->ne[i]; |
|
|
|
|
|
|
|
|
|
x = ggml_reshape_4d(ctx, x, x->ne[0] / heads, heads, x->ne[1], x->ne[2]); |
|
|
|
|
|
|
|
x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3)); |
|
|
|
|
|
return x; |
|
} |
|
|
|
std::vector<struct ggml_tensor*> chunk_half(struct ggml_context* ctx, |
|
struct ggml_tensor* x) { |
|
auto tlo = ggml_view_4d(ctx, x, x->ne[0] / 2, x->ne[1], x->ne[2], x->ne[3], x->nb[1], x->nb[2], x->nb[3], 0); |
|
auto tli = ggml_view_4d(ctx, x, x->ne[0] / 2, x->ne[1], x->ne[2], x->ne[3], x->nb[1], x->nb[2], x->nb[3], x->nb[0] * x->ne[0] / 2); |
|
return {ggml_cont(ctx, tlo), |
|
ggml_cont(ctx, tli)}; |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* latents) { |
|
|
|
|
|
|
|
|
|
int64_t ne[4]; |
|
for (int i = 0; i < 4; ++i) |
|
ne[i] = latents->ne[i]; |
|
|
|
auto norm1 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm1"]); |
|
auto norm2 = std::dynamic_pointer_cast<LayerNorm>(blocks["norm2"]); |
|
x = norm1->forward(ctx, x); |
|
latents = norm2->forward(ctx, latents); |
|
auto to_q = std::dynamic_pointer_cast<Linear>(blocks["to_q"]); |
|
auto q = to_q->forward(ctx, latents); |
|
|
|
auto kv_input = ggml_concat(ctx, x, latents, 1); |
|
auto to_kv = std::dynamic_pointer_cast<Linear>(blocks["to_kv"]); |
|
auto kv = to_kv->forward(ctx, kv_input); |
|
auto k = ggml_view_4d(ctx, kv, kv->ne[0] / 2, kv->ne[1], kv->ne[2], kv->ne[3], kv->nb[1] / 2, kv->nb[2] / 2, kv->nb[3] / 2, 0); |
|
auto v = ggml_view_4d(ctx, kv, kv->ne[0] / 2, kv->ne[1], kv->ne[2], kv->ne[3], kv->nb[1] / 2, kv->nb[2] / 2, kv->nb[3] / 2, kv->nb[0] * (kv->ne[0] / 2)); |
|
k = ggml_cont(ctx, k); |
|
v = ggml_cont(ctx, v); |
|
q = reshape_tensor(ctx, q, heads); |
|
k = reshape_tensor(ctx, k, heads); |
|
v = reshape_tensor(ctx, v, heads); |
|
scale = 1.f / sqrt(sqrt((float)dim_head)); |
|
k = ggml_scale_inplace(ctx, k, scale); |
|
q = ggml_scale_inplace(ctx, q, scale); |
|
|
|
auto weight = ggml_mul_mat(ctx, k, q); |
|
|
|
|
|
|
|
|
|
|
|
|
|
weight = ggml_soft_max_inplace(ctx, weight); |
|
v = ggml_cont(ctx, ggml_transpose(ctx, v)); |
|
|
|
auto out = ggml_mul_mat(ctx, v, weight); |
|
out = ggml_cont(ctx, ggml_permute(ctx, out, 0, 2, 1, 3)); |
|
out = ggml_reshape_3d(ctx, out, ne[0], ne[1], ggml_nelements(out) / (ne[0] * ne[1])); |
|
auto to_out = std::dynamic_pointer_cast<Linear>(blocks["to_out"]); |
|
out = to_out->forward(ctx, out); |
|
return out; |
|
} |
|
}; |
|
|
|
struct FacePerceiverResampler : public GGMLBlock { |
|
|
|
int depth; |
|
|
|
public: |
|
FacePerceiverResampler(int dim = 768, |
|
int d = 4, |
|
int dim_head = 64, |
|
int heads = 16, |
|
int embedding_dim = 1280, |
|
int output_dim = 768, |
|
int ff_mult = 4) |
|
: depth(d) { |
|
blocks["proj_in"] = std::shared_ptr<GGMLBlock>(new Linear(embedding_dim, dim, true)); |
|
blocks["proj_out"] = std::shared_ptr<GGMLBlock>(new Linear(dim, output_dim, true)); |
|
blocks["norm_out"] = std::shared_ptr<GGMLBlock>(new LayerNorm(output_dim)); |
|
|
|
for (int i = 0; i < depth; i++) { |
|
std::string name = "layers." + std::to_string(i) + ".0"; |
|
blocks[name] = std::shared_ptr<GGMLBlock>(new PerceiverAttention(dim, dim_head, heads)); |
|
name = "layers." + std::to_string(i) + ".1"; |
|
blocks[name] = std::shared_ptr<GGMLBlock>(new PMFeedForward(dim, ff_mult)); |
|
} |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* latents, |
|
struct ggml_tensor* x) { |
|
|
|
auto proj_in = std::dynamic_pointer_cast<Linear>(blocks["proj_in"]); |
|
auto proj_out = std::dynamic_pointer_cast<Linear>(blocks["proj_out"]); |
|
auto norm_out = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_out"]); |
|
|
|
x = proj_in->forward(ctx, x); |
|
for (int i = 0; i < depth; i++) { |
|
std::string name = "layers." + std::to_string(i) + ".0"; |
|
auto attn = std::dynamic_pointer_cast<PerceiverAttention>(blocks[name]); |
|
name = "layers." + std::to_string(i) + ".1"; |
|
auto ff = std::dynamic_pointer_cast<PMFeedForward>(blocks[name]); |
|
auto t = attn->forward(ctx, x, latents); |
|
latents = ggml_add(ctx, t, latents); |
|
t = ff->forward(ctx, latents); |
|
latents = ggml_add(ctx, t, latents); |
|
} |
|
latents = proj_out->forward(ctx, latents); |
|
latents = norm_out->forward(ctx, latents); |
|
return latents; |
|
} |
|
}; |
|
|
|
struct QFormerPerceiver : public GGMLBlock { |
|
|
|
int num_tokens; |
|
int cross_attention_dim; |
|
bool use_residul; |
|
|
|
public: |
|
QFormerPerceiver(int id_embeddings_dim, int cross_attention_d, int num_t, int embedding_dim = 1024, bool use_r = true, int ratio = 4) |
|
: cross_attention_dim(cross_attention_d), num_tokens(num_t), use_residul(use_r) { |
|
blocks["token_proj"] = std::shared_ptr<GGMLBlock>(new Mlp(id_embeddings_dim, |
|
id_embeddings_dim * ratio, |
|
cross_attention_dim * num_tokens, |
|
true)); |
|
blocks["token_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(cross_attention_d)); |
|
blocks["perceiver_resampler"] = std::shared_ptr<GGMLBlock>(new FacePerceiverResampler( |
|
cross_attention_dim, |
|
4, |
|
128, |
|
cross_attention_dim / 128, |
|
embedding_dim, |
|
cross_attention_dim, |
|
4)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* x, |
|
struct ggml_tensor* last_hidden_state) { |
|
|
|
auto token_proj = std::dynamic_pointer_cast<Mlp>(blocks["token_proj"]); |
|
auto token_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["token_norm"]); |
|
auto perceiver_resampler = std::dynamic_pointer_cast<FacePerceiverResampler>(blocks["perceiver_resampler"]); |
|
|
|
x = token_proj->forward(ctx, x); |
|
int64_t nel = ggml_nelements(x); |
|
x = ggml_reshape_3d(ctx, x, cross_attention_dim, num_tokens, nel / (cross_attention_dim * num_tokens)); |
|
x = token_norm->forward(ctx, x); |
|
struct ggml_tensor* out = perceiver_resampler->forward(ctx, x, last_hidden_state); |
|
if (use_residul) |
|
out = ggml_add(ctx, x, out); |
|
return out; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct FuseModule : public GGMLBlock { |
|
|
|
int embed_dim; |
|
|
|
public: |
|
FuseModule(int imb_d) |
|
: embed_dim(imb_d) { |
|
blocks["mlp1"] = std::shared_ptr<GGMLBlock>(new FuseBlock(imb_d * 2, imb_d, imb_d, false)); |
|
blocks["mlp2"] = std::shared_ptr<GGMLBlock>(new FuseBlock(imb_d, imb_d, imb_d, true)); |
|
blocks["layer_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(embed_dim)); |
|
} |
|
|
|
struct ggml_tensor* fuse_fn(struct ggml_context* ctx, |
|
struct ggml_tensor* prompt_embeds, |
|
struct ggml_tensor* id_embeds) { |
|
auto mlp1 = std::dynamic_pointer_cast<FuseBlock>(blocks["mlp1"]); |
|
auto mlp2 = std::dynamic_pointer_cast<FuseBlock>(blocks["mlp2"]); |
|
auto layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm"]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto stacked_id_embeds = ggml_concat(ctx, prompt_embeds, id_embeds, 0); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stacked_id_embeds = mlp1->forward(ctx, stacked_id_embeds); |
|
stacked_id_embeds = ggml_add(ctx, stacked_id_embeds, prompt_embeds); |
|
stacked_id_embeds = mlp2->forward(ctx, stacked_id_embeds); |
|
stacked_id_embeds = layer_norm->forward(ctx, stacked_id_embeds); |
|
|
|
|
|
|
|
return stacked_id_embeds; |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* prompt_embeds, |
|
struct ggml_tensor* id_embeds, |
|
struct ggml_tensor* class_tokens_mask, |
|
struct ggml_tensor* class_tokens_mask_pos, |
|
struct ggml_tensor* left, |
|
struct ggml_tensor* right) { |
|
|
|
|
|
struct ggml_tensor* valid_id_embeds = id_embeds; |
|
|
|
|
|
ggml_set_name(class_tokens_mask_pos, "class_tokens_mask_pos"); |
|
ggml_set_name(prompt_embeds, "prompt_embeds"); |
|
|
|
|
|
struct ggml_tensor* image_token_embeds = ggml_get_rows(ctx, prompt_embeds, class_tokens_mask_pos); |
|
ggml_set_name(image_token_embeds, "image_token_embeds"); |
|
valid_id_embeds = ggml_reshape_2d(ctx, valid_id_embeds, valid_id_embeds->ne[0], |
|
ggml_nelements(valid_id_embeds) / valid_id_embeds->ne[0]); |
|
struct ggml_tensor* stacked_id_embeds = fuse_fn(ctx, image_token_embeds, valid_id_embeds); |
|
|
|
|
|
|
|
|
|
|
|
if (left && right) { |
|
stacked_id_embeds = ggml_concat(ctx, left, stacked_id_embeds, 1); |
|
stacked_id_embeds = ggml_concat(ctx, stacked_id_embeds, right, 1); |
|
} else if (left) { |
|
stacked_id_embeds = ggml_concat(ctx, left, stacked_id_embeds, 1); |
|
} else if (right) { |
|
stacked_id_embeds = ggml_concat(ctx, stacked_id_embeds, right, 1); |
|
} |
|
|
|
|
|
|
|
class_tokens_mask = ggml_cont(ctx, ggml_transpose(ctx, class_tokens_mask)); |
|
class_tokens_mask = ggml_repeat(ctx, class_tokens_mask, prompt_embeds); |
|
prompt_embeds = ggml_mul(ctx, prompt_embeds, class_tokens_mask); |
|
struct ggml_tensor* updated_prompt_embeds = ggml_add(ctx, prompt_embeds, stacked_id_embeds); |
|
ggml_set_name(updated_prompt_embeds, "updated_prompt_embeds"); |
|
|
|
return updated_prompt_embeds; |
|
} |
|
}; |
|
|
|
struct PhotoMakerIDEncoderBlock : public CLIPVisionModelProjection { |
|
PhotoMakerIDEncoderBlock() |
|
: CLIPVisionModelProjection(OPENAI_CLIP_VIT_L_14) { |
|
blocks["visual_projection_2"] = std::shared_ptr<GGMLBlock>(new Linear(1024, 1280, false)); |
|
blocks["fuse_module"] = std::shared_ptr<GGMLBlock>(new FuseModule(2048)); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* id_pixel_values, |
|
struct ggml_tensor* prompt_embeds, |
|
struct ggml_tensor* class_tokens_mask, |
|
struct ggml_tensor* class_tokens_mask_pos, |
|
struct ggml_tensor* left, |
|
struct ggml_tensor* right) { |
|
|
|
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]); |
|
auto visual_projection = std::dynamic_pointer_cast<CLIPProjection>(blocks["visual_projection"]); |
|
auto visual_projection_2 = std::dynamic_pointer_cast<Linear>(blocks["visual_projection_2"]); |
|
auto fuse_module = std::dynamic_pointer_cast<FuseModule>(blocks["fuse_module"]); |
|
|
|
struct ggml_tensor* shared_id_embeds = vision_model->forward(ctx, id_pixel_values); |
|
struct ggml_tensor* id_embeds = visual_projection->forward(ctx, shared_id_embeds); |
|
struct ggml_tensor* id_embeds_2 = visual_projection_2->forward(ctx, shared_id_embeds); |
|
|
|
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 2, 0, 1, 3)); |
|
id_embeds_2 = ggml_cont(ctx, ggml_permute(ctx, id_embeds_2, 2, 0, 1, 3)); |
|
|
|
id_embeds = ggml_concat(ctx, id_embeds, id_embeds_2, 2); |
|
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 1, 2, 0, 3)); |
|
|
|
struct ggml_tensor* updated_prompt_embeds = fuse_module->forward(ctx, |
|
prompt_embeds, |
|
id_embeds, |
|
class_tokens_mask, |
|
class_tokens_mask_pos, |
|
left, right); |
|
return updated_prompt_embeds; |
|
} |
|
}; |
|
|
|
struct PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock : public CLIPVisionModelProjection { |
|
int cross_attention_dim; |
|
int num_tokens; |
|
|
|
PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock(int id_embeddings_dim = 512) |
|
: CLIPVisionModelProjection(OPENAI_CLIP_VIT_L_14), |
|
cross_attention_dim(2048), |
|
num_tokens(2) { |
|
blocks["visual_projection_2"] = std::shared_ptr<GGMLBlock>(new Linear(1024, 1280, false)); |
|
blocks["fuse_module"] = std::shared_ptr<GGMLBlock>(new FuseModule(2048)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
blocks["qformer_perceiver"] = std::shared_ptr<GGMLBlock>(new QFormerPerceiver(id_embeddings_dim, |
|
cross_attention_dim, |
|
num_tokens)); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, |
|
struct ggml_tensor* id_pixel_values, |
|
struct ggml_tensor* prompt_embeds, |
|
struct ggml_tensor* class_tokens_mask, |
|
struct ggml_tensor* class_tokens_mask_pos, |
|
struct ggml_tensor* id_embeds, |
|
struct ggml_tensor* left, |
|
struct ggml_tensor* right) { |
|
|
|
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]); |
|
auto fuse_module = std::dynamic_pointer_cast<FuseModule>(blocks["fuse_module"]); |
|
auto qformer_perceiver = std::dynamic_pointer_cast<QFormerPerceiver>(blocks["qformer_perceiver"]); |
|
|
|
|
|
struct ggml_tensor* last_hidden_state = vision_model->forward(ctx, id_pixel_values, false); |
|
id_embeds = qformer_perceiver->forward(ctx, id_embeds, last_hidden_state); |
|
|
|
struct ggml_tensor* updated_prompt_embeds = fuse_module->forward(ctx, |
|
prompt_embeds, |
|
id_embeds, |
|
class_tokens_mask, |
|
class_tokens_mask_pos, |
|
left, right); |
|
return updated_prompt_embeds; |
|
} |
|
}; |
|
|
|
struct PhotoMakerIDEncoder : public GGMLRunner { |
|
public: |
|
SDVersion version = VERSION_SDXL; |
|
PMVersion pm_version = PM_VERSION_1; |
|
PhotoMakerIDEncoderBlock id_encoder; |
|
PhotoMakerIDEncoder_CLIPInsightfaceExtendtokenBlock id_encoder2; |
|
float style_strength; |
|
|
|
std::vector<float> ctm; |
|
std::vector<ggml_fp16_t> ctmf16; |
|
std::vector<int> ctmpos; |
|
|
|
std::vector<ggml_fp16_t> zeros_left_16; |
|
std::vector<float> zeros_left; |
|
std::vector<ggml_fp16_t> zeros_right_16; |
|
std::vector<float> zeros_right; |
|
|
|
public: |
|
PhotoMakerIDEncoder(ggml_backend_t backend, std::map<std::string, enum ggml_type>& tensor_types, const std::string prefix, SDVersion version = VERSION_SDXL, PMVersion pm_v = PM_VERSION_1, float sty = 20.f) |
|
: GGMLRunner(backend), |
|
version(version), |
|
pm_version(pm_v), |
|
style_strength(sty) { |
|
if (pm_version == PM_VERSION_1) { |
|
id_encoder.init(params_ctx, tensor_types, prefix); |
|
} else if (pm_version == PM_VERSION_2) { |
|
id_encoder2.init(params_ctx, tensor_types, prefix); |
|
} |
|
} |
|
|
|
std::string get_desc() { |
|
return "pmid"; |
|
} |
|
|
|
PMVersion get_version() const { |
|
return pm_version; |
|
} |
|
|
|
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) { |
|
if (pm_version == PM_VERSION_1) |
|
id_encoder.get_param_tensors(tensors, prefix); |
|
else if (pm_version == PM_VERSION_2) |
|
id_encoder2.get_param_tensors(tensors, prefix); |
|
} |
|
|
|
struct ggml_cgraph* build_graph( |
|
struct ggml_tensor* id_pixel_values, |
|
struct ggml_tensor* prompt_embeds, |
|
std::vector<bool>& class_tokens_mask, |
|
struct ggml_tensor* id_embeds) { |
|
ctm.clear(); |
|
ctmf16.clear(); |
|
ctmpos.clear(); |
|
zeros_left.clear(); |
|
zeros_left_16.clear(); |
|
zeros_right.clear(); |
|
zeros_right_16.clear(); |
|
|
|
ggml_context* ctx0 = compute_ctx; |
|
|
|
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx); |
|
|
|
int64_t hidden_size = prompt_embeds->ne[0]; |
|
int64_t seq_length = prompt_embeds->ne[1]; |
|
ggml_type type = GGML_TYPE_F32; |
|
|
|
struct ggml_tensor* class_tokens_mask_d = ggml_new_tensor_1d(ctx0, type, class_tokens_mask.size()); |
|
|
|
struct ggml_tensor* id_pixel_values_d = to_backend(id_pixel_values); |
|
struct ggml_tensor* prompt_embeds_d = to_backend(prompt_embeds); |
|
struct ggml_tensor* id_embeds_d = to_backend(id_embeds); |
|
|
|
struct ggml_tensor* left = NULL; |
|
struct ggml_tensor* right = NULL; |
|
for (int i = 0; i < class_tokens_mask.size(); i++) { |
|
if (class_tokens_mask[i]) { |
|
|
|
ctm.push_back(0.f); |
|
ctmf16.push_back(ggml_fp32_to_fp16(0.f)); |
|
ctmpos.push_back(i); |
|
} else { |
|
|
|
ctm.push_back(1.f); |
|
ctmf16.push_back(ggml_fp32_to_fp16(1.f)); |
|
} |
|
} |
|
|
|
if (ctmpos[0] > 0) { |
|
|
|
left = ggml_new_tensor_3d(ctx0, type, hidden_size, ctmpos[0], 1); |
|
} |
|
if (ctmpos[ctmpos.size() - 1] < seq_length - 1) { |
|
|
|
|
|
right = ggml_new_tensor_3d(ctx0, type, |
|
hidden_size, seq_length - ctmpos[ctmpos.size() - 1] - 1, 1); |
|
} |
|
struct ggml_tensor* class_tokens_mask_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ctmpos.size()); |
|
|
|
{ |
|
if (type == GGML_TYPE_F16) |
|
set_backend_tensor_data(class_tokens_mask_d, ctmf16.data()); |
|
else |
|
set_backend_tensor_data(class_tokens_mask_d, ctm.data()); |
|
set_backend_tensor_data(class_tokens_mask_pos, ctmpos.data()); |
|
if (left) { |
|
if (type == GGML_TYPE_F16) { |
|
for (int i = 0; i < ggml_nelements(left); ++i) |
|
zeros_left_16.push_back(ggml_fp32_to_fp16(0.f)); |
|
set_backend_tensor_data(left, zeros_left_16.data()); |
|
} else { |
|
for (int i = 0; i < ggml_nelements(left); ++i) |
|
zeros_left.push_back(0.f); |
|
set_backend_tensor_data(left, zeros_left.data()); |
|
} |
|
} |
|
if (right) { |
|
if (type == GGML_TYPE_F16) { |
|
for (int i = 0; i < ggml_nelements(right); ++i) |
|
zeros_right_16.push_back(ggml_fp32_to_fp16(0.f)); |
|
set_backend_tensor_data(right, zeros_right_16.data()); |
|
} else { |
|
for (int i = 0; i < ggml_nelements(right); ++i) |
|
zeros_right.push_back(0.f); |
|
set_backend_tensor_data(right, zeros_right.data()); |
|
} |
|
} |
|
} |
|
struct ggml_tensor* updated_prompt_embeds = NULL; |
|
if (pm_version == PM_VERSION_1) |
|
updated_prompt_embeds = id_encoder.forward(ctx0, |
|
id_pixel_values_d, |
|
prompt_embeds_d, |
|
class_tokens_mask_d, |
|
class_tokens_mask_pos, |
|
left, right); |
|
else if (pm_version == PM_VERSION_2) |
|
updated_prompt_embeds = id_encoder2.forward(ctx0, |
|
id_pixel_values_d, |
|
prompt_embeds_d, |
|
class_tokens_mask_d, |
|
class_tokens_mask_pos, |
|
id_embeds_d, |
|
left, right); |
|
|
|
ggml_build_forward_expand(gf, updated_prompt_embeds); |
|
|
|
return gf; |
|
} |
|
|
|
void compute(const int n_threads, |
|
struct ggml_tensor* id_pixel_values, |
|
struct ggml_tensor* prompt_embeds, |
|
struct ggml_tensor* id_embeds, |
|
std::vector<bool>& class_tokens_mask, |
|
struct ggml_tensor** updated_prompt_embeds, |
|
ggml_context* output_ctx) { |
|
auto get_graph = [&]() -> struct ggml_cgraph* { |
|
|
|
return build_graph(id_pixel_values, prompt_embeds, class_tokens_mask, id_embeds); |
|
}; |
|
|
|
|
|
GGMLRunner::compute(get_graph, n_threads, true, updated_prompt_embeds, output_ctx); |
|
} |
|
}; |
|
|
|
struct PhotoMakerIDEmbed : public GGMLRunner { |
|
std::map<std::string, struct ggml_tensor*> tensors; |
|
std::string file_path; |
|
ModelLoader* model_loader; |
|
bool load_failed = false; |
|
bool applied = false; |
|
|
|
PhotoMakerIDEmbed(ggml_backend_t backend, |
|
ModelLoader* ml, |
|
const std::string& file_path = "", |
|
const std::string& prefix = "") |
|
: file_path(file_path), GGMLRunner(backend), model_loader(ml) { |
|
if (!model_loader->init_from_file(file_path, prefix)) { |
|
load_failed = true; |
|
} |
|
} |
|
|
|
std::string get_desc() { |
|
return "id_embeds"; |
|
} |
|
|
|
bool load_from_file(bool filter_tensor = false) { |
|
LOG_INFO("loading PhotoMaker ID Embeds from '%s'", file_path.c_str()); |
|
|
|
if (load_failed) { |
|
LOG_ERROR("init photomaker id embed from file failed: '%s'", file_path.c_str()); |
|
return false; |
|
} |
|
|
|
bool dry_run = true; |
|
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool { |
|
const std::string& name = tensor_storage.name; |
|
|
|
if (filter_tensor && !contains(name, "pmid.id_embeds")) { |
|
|
|
return true; |
|
} |
|
if (dry_run) { |
|
struct ggml_tensor* real = ggml_new_tensor(params_ctx, |
|
tensor_storage.type, |
|
tensor_storage.n_dims, |
|
tensor_storage.ne); |
|
tensors[name] = real; |
|
} else { |
|
auto real = tensors[name]; |
|
*dst_tensor = real; |
|
} |
|
|
|
return true; |
|
}; |
|
|
|
model_loader->load_tensors(on_new_tensor_cb, backend); |
|
alloc_params_buffer(); |
|
|
|
dry_run = false; |
|
model_loader->load_tensors(on_new_tensor_cb, backend); |
|
|
|
LOG_DEBUG("finished loading PhotoMaker ID Embeds "); |
|
return true; |
|
} |
|
|
|
struct ggml_tensor* get() { |
|
std::map<std::string, struct ggml_tensor*>::iterator pos; |
|
pos = tensors.find("pmid.id_embeds"); |
|
if (pos != tensors.end()) |
|
return pos->second; |
|
return NULL; |
|
} |
|
}; |
|
|
|
#endif |
|
|