|
#ifndef __TAE_HPP__ |
|
#define __TAE_HPP__ |
|
|
|
#include "ggml_extend.hpp" |
|
|
|
#include "model.h" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TAEBlock : public UnaryBlock { |
|
protected: |
|
int n_in; |
|
int n_out; |
|
|
|
public: |
|
TAEBlock(int n_in, int n_out) |
|
: n_in(n_in), n_out(n_out) { |
|
blocks["conv.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {3, 3}, {1, 1}, {1, 1})); |
|
blocks["conv.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1})); |
|
blocks["conv.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1})); |
|
if (n_in != n_out) { |
|
blocks["skip"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {1, 1}, {1, 1}, {1, 1}, {1, 1}, false)); |
|
} |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
|
|
|
|
|
|
auto conv_0 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.0"]); |
|
auto conv_2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.2"]); |
|
auto conv_4 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.4"]); |
|
|
|
auto h = conv_0->forward(ctx, x); |
|
h = ggml_relu_inplace(ctx, h); |
|
h = conv_2->forward(ctx, h); |
|
h = ggml_relu_inplace(ctx, h); |
|
h = conv_4->forward(ctx, h); |
|
|
|
if (n_in != n_out) { |
|
auto skip = std::dynamic_pointer_cast<Conv2d>(blocks["skip"]); |
|
LOG_DEBUG("skip"); |
|
x = skip->forward(ctx, x); |
|
} |
|
|
|
h = ggml_add(ctx, h, x); |
|
h = ggml_relu_inplace(ctx, h); |
|
return h; |
|
} |
|
}; |
|
|
|
class TinyEncoder : public UnaryBlock { |
|
int in_channels = 3; |
|
int channels = 64; |
|
int z_channels = 4; |
|
int num_blocks = 3; |
|
|
|
public: |
|
TinyEncoder(int z_channels = 4) |
|
: z_channels(z_channels) { |
|
int index = 0; |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, channels, {3, 3}, {1, 1}, {1, 1})); |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels)); |
|
|
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false)); |
|
for (int i = 0; i < num_blocks; i++) { |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels)); |
|
} |
|
|
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false)); |
|
for (int i = 0; i < num_blocks; i++) { |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels)); |
|
} |
|
|
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false)); |
|
for (int i = 0; i < num_blocks; i++) { |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels)); |
|
} |
|
|
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, z_channels, {3, 3}, {1, 1}, {1, 1})); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
|
|
|
|
|
|
for (int i = 0; i < num_blocks * 3 + 6; i++) { |
|
auto block = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(i)]); |
|
|
|
x = block->forward(ctx, x); |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
class TinyDecoder : public UnaryBlock { |
|
int z_channels = 4; |
|
int channels = 64; |
|
int out_channels = 3; |
|
int num_blocks = 3; |
|
|
|
public: |
|
TinyDecoder(int z_channels = 4) |
|
: z_channels(z_channels) { |
|
int index = 0; |
|
|
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(z_channels, channels, {3, 3}, {1, 1}, {1, 1})); |
|
index++; |
|
|
|
for (int i = 0; i < num_blocks; i++) { |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels)); |
|
} |
|
index++; |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false)); |
|
|
|
for (int i = 0; i < num_blocks; i++) { |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels)); |
|
} |
|
index++; |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false)); |
|
|
|
for (int i = 0; i < num_blocks; i++) { |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels)); |
|
} |
|
index++; |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false)); |
|
|
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels)); |
|
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {1, 1}, {1, 1})); |
|
} |
|
|
|
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* z) { |
|
|
|
|
|
|
|
auto h = ggml_scale(ctx, z, 1.0f / 3.0f); |
|
h = ggml_tanh_inplace(ctx, h); |
|
h = ggml_scale(ctx, h, 3.0f); |
|
|
|
for (int i = 0; i < num_blocks * 3 + 10; i++) { |
|
if (blocks.find(std::to_string(i)) == blocks.end()) { |
|
if (i == 1) { |
|
h = ggml_relu_inplace(ctx, h); |
|
} else { |
|
h = ggml_upscale(ctx, h, 2); |
|
} |
|
continue; |
|
} |
|
auto block = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(i)]); |
|
|
|
h = block->forward(ctx, h); |
|
} |
|
|
|
return h; |
|
} |
|
}; |
|
|
|
class TAESD : public GGMLBlock { |
|
protected: |
|
bool decode_only; |
|
|
|
public: |
|
TAESD(bool decode_only = true, SDVersion version = VERSION_SD1) |
|
: decode_only(decode_only) { |
|
int z_channels = 4; |
|
if (sd_version_is_dit(version)) { |
|
z_channels = 16; |
|
} |
|
blocks["decoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyDecoder(z_channels)); |
|
|
|
if (!decode_only) { |
|
blocks["encoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyEncoder(z_channels)); |
|
} |
|
} |
|
|
|
struct ggml_tensor* decode(struct ggml_context* ctx, struct ggml_tensor* z) { |
|
auto decoder = std::dynamic_pointer_cast<TinyDecoder>(blocks["decoder.layers"]); |
|
return decoder->forward(ctx, z); |
|
} |
|
|
|
struct ggml_tensor* encode(struct ggml_context* ctx, struct ggml_tensor* x) { |
|
auto encoder = std::dynamic_pointer_cast<TinyEncoder>(blocks["encoder.layers"]); |
|
return encoder->forward(ctx, x); |
|
} |
|
}; |
|
|
|
struct TinyAutoEncoder : public GGMLRunner { |
|
TAESD taesd; |
|
bool decode_only = false; |
|
|
|
TinyAutoEncoder(ggml_backend_t backend, |
|
std::map<std::string, enum ggml_type>& tensor_types, |
|
const std::string prefix, |
|
bool decoder_only = true, |
|
SDVersion version = VERSION_SD1) |
|
: decode_only(decoder_only), |
|
taesd(decode_only, version), |
|
GGMLRunner(backend) { |
|
taesd.init(params_ctx, tensor_types, prefix); |
|
} |
|
|
|
std::string get_desc() { |
|
return "taesd"; |
|
} |
|
|
|
bool load_from_file(const std::string& file_path) { |
|
LOG_INFO("loading taesd from '%s', decode_only = %s", file_path.c_str(), decode_only ? "true" : "false"); |
|
alloc_params_buffer(); |
|
std::map<std::string, ggml_tensor*> taesd_tensors; |
|
taesd.get_param_tensors(taesd_tensors); |
|
std::set<std::string> ignore_tensors; |
|
if (decode_only) { |
|
ignore_tensors.insert("encoder."); |
|
} |
|
|
|
ModelLoader model_loader; |
|
if (!model_loader.init_from_file(file_path)) { |
|
LOG_ERROR("init taesd model loader from file failed: '%s'", file_path.c_str()); |
|
return false; |
|
} |
|
|
|
bool success = model_loader.load_tensors(taesd_tensors, backend, ignore_tensors); |
|
|
|
if (!success) { |
|
LOG_ERROR("load tae tensors from model loader failed"); |
|
return false; |
|
} |
|
|
|
LOG_INFO("taesd model loaded"); |
|
return success; |
|
} |
|
|
|
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) { |
|
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx); |
|
z = to_backend(z); |
|
struct ggml_tensor* out = decode_graph ? taesd.decode(compute_ctx, z) : taesd.encode(compute_ctx, z); |
|
ggml_build_forward_expand(gf, out); |
|
return gf; |
|
} |
|
|
|
void compute(const int n_threads, |
|
struct ggml_tensor* z, |
|
bool decode_graph, |
|
struct ggml_tensor** output, |
|
struct ggml_context* output_ctx = NULL) { |
|
auto get_graph = [&]() -> struct ggml_cgraph* { |
|
return build_graph(z, decode_graph); |
|
}; |
|
|
|
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx); |
|
} |
|
}; |
|
|
|
#endif |