#ifndef __CONDITIONER_HPP__ #define __CONDITIONER_HPP__ #include "clip.hpp" #include "t5.hpp" struct SDCondition { struct ggml_tensor* c_crossattn = NULL; // aka context struct ggml_tensor* c_vector = NULL; // aka y struct ggml_tensor* c_concat = NULL; SDCondition() = default; SDCondition(struct ggml_tensor* c_crossattn, struct ggml_tensor* c_vector, struct ggml_tensor* c_concat) : c_crossattn(c_crossattn), c_vector(c_vector), c_concat(c_concat) {} }; struct Conditioner { virtual SDCondition get_learned_condition(ggml_context* work_ctx, int n_threads, const std::string& text, int clip_skip, int width, int height, int adm_in_channels = -1, bool force_zero_embeddings = false) = 0; virtual void alloc_params_buffer() = 0; virtual void free_params_buffer() = 0; virtual void get_param_tensors(std::map& tensors) = 0; virtual size_t get_params_buffer_size() = 0; virtual std::tuple> get_learned_condition_with_trigger(ggml_context* work_ctx, int n_threads, const std::string& text, int clip_skip, int width, int height, int num_input_imgs, int adm_in_channels = -1, bool force_zero_embeddings = false) = 0; virtual std::string remove_trigger_from_prompt(ggml_context* work_ctx, const std::string& prompt) = 0; }; // ldm.modules.encoders.modules.FrozenCLIPEmbedder // Ref: https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/cad87bf4e3e0b0a759afa94e933527c3123d59bc/modules/sd_hijack_clip.py#L283 struct FrozenCLIPEmbedderWithCustomWords : public Conditioner { SDVersion version = VERSION_SD1; PMVersion pm_version = PM_VERSION_1; CLIPTokenizer tokenizer; std::shared_ptr text_model; std::shared_ptr text_model2; std::string trigger_word = "img"; // should be user settable std::string embd_dir; int32_t num_custom_embeddings = 0; std::vector token_embed_custom; std::vector readed_embeddings; FrozenCLIPEmbedderWithCustomWords(ggml_backend_t backend, std::map& tensor_types, const std::string& embd_dir, SDVersion version = VERSION_SD1, PMVersion pv = PM_VERSION_1, int clip_skip = -1) : version(version), pm_version(pv), tokenizer(version == VERSION_SD2 ? 0 : 49407), embd_dir(embd_dir) { if (clip_skip <= 0) { clip_skip = 1; if (version == VERSION_SD2 || version == VERSION_SDXL) { clip_skip = 2; } } if (version == VERSION_SD1) { text_model = std::make_shared(backend, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, clip_skip); } else if (version == VERSION_SD2) { text_model = std::make_shared(backend, tensor_types, "cond_stage_model.transformer.text_model", OPEN_CLIP_VIT_H_14, clip_skip); } else if (version == VERSION_SDXL) { text_model = std::make_shared(backend, tensor_types, "cond_stage_model.transformer.text_model", OPENAI_CLIP_VIT_L_14, clip_skip, false); text_model2 = std::make_shared(backend, tensor_types, "cond_stage_model.1.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, clip_skip, false); } } void set_clip_skip(int clip_skip) { text_model->set_clip_skip(clip_skip); if (version == VERSION_SDXL) { text_model2->set_clip_skip(clip_skip); } } void get_param_tensors(std::map& tensors) { text_model->get_param_tensors(tensors, "cond_stage_model.transformer.text_model"); if (version == VERSION_SDXL) { text_model2->get_param_tensors(tensors, "cond_stage_model.1.transformer.text_model"); } } void alloc_params_buffer() { text_model->alloc_params_buffer(); if (version == VERSION_SDXL) { text_model2->alloc_params_buffer(); } } void free_params_buffer() { text_model->free_params_buffer(); if (version == VERSION_SDXL) { text_model2->free_params_buffer(); } } size_t get_params_buffer_size() { size_t buffer_size = text_model->get_params_buffer_size(); if (version == VERSION_SDXL) { buffer_size += text_model2->get_params_buffer_size(); } return buffer_size; } bool load_embedding(std::string embd_name, std::string embd_path, std::vector& bpe_tokens) { // the order matters ModelLoader model_loader; if (!model_loader.init_from_file(embd_path)) { LOG_ERROR("embedding '%s' failed", embd_name.c_str()); return false; } if (std::find(readed_embeddings.begin(), readed_embeddings.end(), embd_name) != readed_embeddings.end()) { LOG_DEBUG("embedding already read in: %s", embd_name.c_str()); return true; } struct ggml_init_params params; params.mem_size = 10 * 1024 * 1024; // max for custom embeddings 10 MB params.mem_buffer = NULL; params.no_alloc = false; struct ggml_context* embd_ctx = ggml_init(params); struct ggml_tensor* embd = NULL; int64_t hidden_size = text_model->model.hidden_size; auto on_load = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) { if (tensor_storage.ne[0] != hidden_size) { LOG_DEBUG("embedding wrong hidden size, got %i, expected %i", tensor_storage.ne[0], hidden_size); return false; } embd = ggml_new_tensor_2d(embd_ctx, tensor_storage.type, hidden_size, tensor_storage.n_dims > 1 ? tensor_storage.ne[1] : 1); *dst_tensor = embd; return true; }; model_loader.load_tensors(on_load, NULL); readed_embeddings.push_back(embd_name); token_embed_custom.resize(token_embed_custom.size() + ggml_nbytes(embd)); memcpy((void*)(token_embed_custom.data() + num_custom_embeddings * hidden_size * ggml_type_size(embd->type)), embd->data, ggml_nbytes(embd)); for (int i = 0; i < embd->ne[1]; i++) { bpe_tokens.push_back(text_model->model.vocab_size + num_custom_embeddings); // LOG_DEBUG("new custom token: %i", text_model.vocab_size + num_custom_embeddings); num_custom_embeddings++; } LOG_DEBUG("embedding '%s' applied, custom embeddings: %i", embd_name.c_str(), num_custom_embeddings); return true; } std::tuple, std::vector, std::vector> tokenize_with_trigger_token(std::string text, int num_input_imgs, int32_t image_token, bool padding = false) { return tokenize_with_trigger_token(text, num_input_imgs, image_token, text_model->model.n_token, padding); } std::vector convert_token_to_id(std::string text) { auto on_new_token_cb = [&](std::string& str, std::vector& bpe_tokens) -> bool { size_t word_end = str.find(","); std::string embd_name = word_end == std::string::npos ? str : str.substr(0, word_end); embd_name = trim(embd_name); std::string embd_path = get_full_path(embd_dir, embd_name + ".pt"); if (embd_path.size() == 0) { embd_path = get_full_path(embd_dir, embd_name + ".ckpt"); } if (embd_path.size() == 0) { embd_path = get_full_path(embd_dir, embd_name + ".safetensors"); } if (embd_path.size() > 0) { if (load_embedding(embd_name, embd_path, bpe_tokens)) { if (word_end != std::string::npos) { str = str.substr(word_end); } else { str = ""; } return true; } } return false; }; std::vector curr_tokens = tokenizer.encode(text, on_new_token_cb); return curr_tokens; } std::string decode(const std::vector& tokens) { return tokenizer.decode(tokens); } std::tuple, std::vector, std::vector> tokenize_with_trigger_token(std::string text, int num_input_imgs, int32_t image_token, size_t max_length = 0, bool padding = false) { auto parsed_attention = parse_prompt_attention(text); { std::stringstream ss; ss << "["; for (const auto& item : parsed_attention) { ss << "['" << item.first << "', " << item.second << "], "; } ss << "]"; LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str()); } auto on_new_token_cb = [&](std::string& str, std::vector& bpe_tokens) -> bool { size_t word_end = str.find(","); std::string embd_name = word_end == std::string::npos ? str : str.substr(0, word_end); embd_name = trim(embd_name); std::string embd_path = get_full_path(embd_dir, embd_name + ".pt"); if (embd_path.size() == 0) { embd_path = get_full_path(embd_dir, embd_name + ".ckpt"); } if (embd_path.size() == 0) { embd_path = get_full_path(embd_dir, embd_name + ".safetensors"); } if (embd_path.size() > 0) { if (load_embedding(embd_name, embd_path, bpe_tokens)) { if (word_end != std::string::npos) { str = str.substr(word_end); } else { str = ""; } return true; } } return false; }; std::vector tokens; std::vector weights; std::vector class_token_mask; int32_t class_idx = -1, tokens_acc = 0; for (const auto& item : parsed_attention) { std::vector class_token_index; std::vector clean_input_ids; const std::string& curr_text = item.first; float curr_weight = item.second; // printf(" %s: %f \n", curr_text.c_str(), curr_weight); std::vector curr_tokens = tokenizer.encode(curr_text, on_new_token_cb); int32_t clean_index = 0; for (uint32_t i = 0; i < curr_tokens.size(); i++) { int token_id = curr_tokens[i]; if (token_id == image_token) class_token_index.push_back(clean_index - 1); else { clean_input_ids.push_back(token_id); clean_index++; } } // GGML_ASSERT(class_token_index.size() == 1); // PhotoMaker currently does not support multiple // trigger words in a single prompt. if (class_token_index.size() == 1) { // Expand the class word token and corresponding mask int class_token = clean_input_ids[class_token_index[0]]; class_idx = tokens_acc + class_token_index[0]; std::vector clean_input_ids_tmp; for (uint32_t i = 0; i < class_token_index[0]; i++) clean_input_ids_tmp.push_back(clean_input_ids[i]); for (uint32_t i = 0; i < (pm_version == PM_VERSION_2 ? 2 * num_input_imgs : num_input_imgs); i++) clean_input_ids_tmp.push_back(class_token); for (uint32_t i = class_token_index[0] + 1; i < clean_input_ids.size(); i++) clean_input_ids_tmp.push_back(clean_input_ids[i]); clean_input_ids.clear(); clean_input_ids = clean_input_ids_tmp; } tokens_acc += clean_index; tokens.insert(tokens.end(), clean_input_ids.begin(), clean_input_ids.end()); weights.insert(weights.end(), clean_input_ids.size(), curr_weight); } // BUG!! double couting, pad_tokens will add BOS at the beginning // tokens.insert(tokens.begin(), tokenizer.BOS_TOKEN_ID); // weights.insert(weights.begin(), 1.0); tokenizer.pad_tokens(tokens, weights, max_length, padding); int offset = pm_version == PM_VERSION_2 ? 2 * num_input_imgs : num_input_imgs; for (uint32_t i = 0; i < tokens.size(); i++) { // if (class_idx + 1 <= i && i < class_idx + 1 + 2*num_input_imgs) // photomaker V2 has num_tokens(=2)*num_input_imgs if (class_idx + 1 <= i && i < class_idx + 1 + offset) // photomaker V2 has num_tokens(=2)*num_input_imgs // hardcode for now class_token_mask.push_back(true); else class_token_mask.push_back(false); } // printf("["); // for (int i = 0; i < tokens.size(); i++) { // printf("%d, ", class_token_mask[i] ? 1 : 0); // } // printf("]\n"); // for (int i = 0; i < tokens.size(); i++) { // std::cout << tokens[i] << ":" << weights[i] << ", "; // } // std::cout << std::endl; return std::make_tuple(tokens, weights, class_token_mask); } std::pair, std::vector> tokenize(std::string text, bool padding = false) { return tokenize(text, text_model->model.n_token, padding); } std::pair, std::vector> tokenize(std::string text, size_t max_length = 0, bool padding = false) { auto parsed_attention = parse_prompt_attention(text); { std::stringstream ss; ss << "["; for (const auto& item : parsed_attention) { ss << "['" << item.first << "', " << item.second << "], "; } ss << "]"; LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str()); } auto on_new_token_cb = [&](std::string& str, std::vector& bpe_tokens) -> bool { size_t word_end = str.find(","); std::string embd_name = word_end == std::string::npos ? str : str.substr(0, word_end); embd_name = trim(embd_name); std::string embd_path = get_full_path(embd_dir, embd_name + ".pt"); if (embd_path.size() == 0) { embd_path = get_full_path(embd_dir, embd_name + ".ckpt"); } if (embd_path.size() == 0) { embd_path = get_full_path(embd_dir, embd_name + ".safetensors"); } if (embd_path.size() > 0) { if (load_embedding(embd_name, embd_path, bpe_tokens)) { if (word_end != std::string::npos) { str = str.substr(word_end); } else { str = ""; } return true; } } return false; }; std::vector tokens; std::vector weights; for (const auto& item : parsed_attention) { const std::string& curr_text = item.first; float curr_weight = item.second; std::vector curr_tokens = tokenizer.encode(curr_text, on_new_token_cb); tokens.insert(tokens.end(), curr_tokens.begin(), curr_tokens.end()); weights.insert(weights.end(), curr_tokens.size(), curr_weight); } tokenizer.pad_tokens(tokens, weights, max_length, padding); // for (int i = 0; i < tokens.size(); i++) { // std::cout << tokens[i] << ":" << weights[i] << ", "; // } // std::cout << std::endl; return {tokens, weights}; } SDCondition get_learned_condition_common(ggml_context* work_ctx, int n_threads, std::vector& tokens, std::vector& weights, int clip_skip, int width, int height, int adm_in_channels = -1, bool force_zero_embeddings = false) { set_clip_skip(clip_skip); int64_t t0 = ggml_time_ms(); struct ggml_tensor* hidden_states = NULL; // [N, n_token, hidden_size] struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, hidden_size] or [n_token, hidden_size + hidden_size2] struct ggml_tensor* chunk_hidden_states1 = NULL; // [n_token, hidden_size] struct ggml_tensor* chunk_hidden_states2 = NULL; // [n_token, hidden_size2] struct ggml_tensor* pooled = NULL; std::vector hidden_states_vec; size_t chunk_len = 77; size_t chunk_count = tokens.size() / chunk_len; for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) { std::vector chunk_tokens(tokens.begin() + chunk_idx * chunk_len, tokens.begin() + (chunk_idx + 1) * chunk_len); std::vector chunk_weights(weights.begin() + chunk_idx * chunk_len, weights.begin() + (chunk_idx + 1) * chunk_len); auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens); struct ggml_tensor* input_ids2 = NULL; size_t max_token_idx = 0; if (version == VERSION_SDXL) { auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), tokenizer.EOS_TOKEN_ID); if (it != chunk_tokens.end()) { std::fill(std::next(it), chunk_tokens.end(), 0); } max_token_idx = std::min(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1); input_ids2 = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens); // for (int i = 0; i < chunk_tokens.size(); i++) { // printf("%d ", chunk_tokens[i]); // } // printf("\n"); } { text_model->compute(n_threads, input_ids, num_custom_embeddings, token_embed_custom.data(), max_token_idx, false, &chunk_hidden_states1, work_ctx); if (version == VERSION_SDXL) { text_model2->compute(n_threads, input_ids2, 0, NULL, max_token_idx, false, &chunk_hidden_states2, work_ctx); // concat chunk_hidden_states = ggml_tensor_concat(work_ctx, chunk_hidden_states1, chunk_hidden_states2, 0); if (chunk_idx == 0) { text_model2->compute(n_threads, input_ids2, 0, NULL, max_token_idx, true, &pooled, work_ctx); } } else { chunk_hidden_states = chunk_hidden_states1; } } int64_t t1 = ggml_time_ms(); LOG_DEBUG("computing condition graph completed, taking %" PRId64 " ms", t1 - t0); ggml_tensor* result = ggml_dup_tensor(work_ctx, chunk_hidden_states); { float original_mean = ggml_tensor_mean(chunk_hidden_states); for (int i2 = 0; i2 < chunk_hidden_states->ne[2]; i2++) { for (int i1 = 0; i1 < chunk_hidden_states->ne[1]; i1++) { for (int i0 = 0; i0 < chunk_hidden_states->ne[0]; i0++) { float value = ggml_tensor_get_f32(chunk_hidden_states, i0, i1, i2); value *= chunk_weights[i1]; ggml_tensor_set_f32(result, value, i0, i1, i2); } } } float new_mean = ggml_tensor_mean(result); ggml_tensor_scale(result, (original_mean / new_mean)); } if (force_zero_embeddings) { float* vec = (float*)result->data; for (int i = 0; i < ggml_nelements(result); i++) { vec[i] = 0; } } hidden_states_vec.insert(hidden_states_vec.end(), (float*)result->data, ((float*)result->data) + ggml_nelements(result)); } hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec); hidden_states = ggml_reshape_2d(work_ctx, hidden_states, chunk_hidden_states->ne[0], ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]); ggml_tensor* vec = NULL; if (version == VERSION_SDXL) { int out_dim = 256; vec = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, adm_in_channels); // [0:1280] size_t offset = 0; memcpy(vec->data, pooled->data, ggml_nbytes(pooled)); offset += ggml_nbytes(pooled); // original_size_as_tuple float orig_width = (float)width; float orig_height = (float)height; std::vector timesteps = {orig_height, orig_width}; ggml_tensor* embed_view = ggml_view_2d(work_ctx, vec, out_dim, 2, ggml_type_size(GGML_TYPE_F32) * out_dim, offset); offset += ggml_nbytes(embed_view); set_timestep_embedding(timesteps, embed_view, out_dim); // print_ggml_tensor(ggml_reshape_1d(work_ctx, embed_view, out_dim * 2)); // crop_coords_top_left float crop_coord_top = 0.f; float crop_coord_left = 0.f; timesteps = {crop_coord_top, crop_coord_left}; embed_view = ggml_view_2d(work_ctx, vec, out_dim, 2, ggml_type_size(GGML_TYPE_F32) * out_dim, offset); offset += ggml_nbytes(embed_view); set_timestep_embedding(timesteps, embed_view, out_dim); // print_ggml_tensor(ggml_reshape_1d(work_ctx, embed_view, out_dim * 2)); // target_size_as_tuple float target_width = (float)width; float target_height = (float)height; timesteps = {target_height, target_width}; embed_view = ggml_view_2d(work_ctx, vec, out_dim, 2, ggml_type_size(GGML_TYPE_F32) * out_dim, offset); offset += ggml_nbytes(embed_view); set_timestep_embedding(timesteps, embed_view, out_dim); // print_ggml_tensor(ggml_reshape_1d(work_ctx, embed_view, out_dim * 2)); GGML_ASSERT(offset == ggml_nbytes(vec)); } // print_ggml_tensor(result); return SDCondition(hidden_states, vec, NULL); } std::tuple> get_learned_condition_with_trigger(ggml_context* work_ctx, int n_threads, const std::string& text, int clip_skip, int width, int height, int num_input_imgs, int adm_in_channels = -1, bool force_zero_embeddings = false) { auto image_tokens = convert_token_to_id(trigger_word); // if(image_tokens.size() == 1){ // printf(" image token id is: %d \n", image_tokens[0]); // } GGML_ASSERT(image_tokens.size() == 1); auto tokens_and_weights = tokenize_with_trigger_token(text, num_input_imgs, image_tokens[0], true); std::vector& tokens = std::get<0>(tokens_and_weights); std::vector& weights = std::get<1>(tokens_and_weights); std::vector& clsm = std::get<2>(tokens_and_weights); // printf("tokens: \n"); // for(int i = 0; i < tokens.size(); ++i) // printf("%d ", tokens[i]); // printf("\n"); // printf("clsm: \n"); // for(int i = 0; i < clsm.size(); ++i) // printf("%d ", clsm[i]?1:0); // printf("\n"); auto cond = get_learned_condition_common(work_ctx, n_threads, tokens, weights, clip_skip, width, height, adm_in_channels, force_zero_embeddings); return std::make_tuple(cond, clsm); } std::string remove_trigger_from_prompt(ggml_context* work_ctx, const std::string& prompt) { auto image_tokens = convert_token_to_id(trigger_word); GGML_ASSERT(image_tokens.size() == 1); auto tokens_and_weights = tokenize(prompt, false); std::vector& tokens = tokens_and_weights.first; auto it = std::find(tokens.begin(), tokens.end(), image_tokens[0]); GGML_ASSERT(it != tokens.end()); // prompt must have trigger word tokens.erase(it); return decode(tokens); } SDCondition get_learned_condition(ggml_context* work_ctx, int n_threads, const std::string& text, int clip_skip, int width, int height, int adm_in_channels = -1, bool force_zero_embeddings = false) { auto tokens_and_weights = tokenize(text, true); std::vector& tokens = tokens_and_weights.first; std::vector& weights = tokens_and_weights.second; return get_learned_condition_common(work_ctx, n_threads, tokens, weights, clip_skip, width, height, adm_in_channels, force_zero_embeddings); } }; struct FrozenCLIPVisionEmbedder : public GGMLRunner { CLIPVisionModelProjection vision_model; FrozenCLIPVisionEmbedder(ggml_backend_t backend, std::map& tensor_types) : vision_model(OPEN_CLIP_VIT_H_14, true), GGMLRunner(backend) { vision_model.init(params_ctx, tensor_types, "cond_stage_model.transformer"); } std::string get_desc() { return "clip_vision"; } void get_param_tensors(std::map& tensors) { vision_model.get_param_tensors(tensors, "cond_stage_model.transformer"); } struct ggml_cgraph* build_graph(struct ggml_tensor* pixel_values) { struct ggml_cgraph* gf = ggml_new_graph(compute_ctx); pixel_values = to_backend(pixel_values); struct ggml_tensor* hidden_states = vision_model.forward(compute_ctx, pixel_values); ggml_build_forward_expand(gf, hidden_states); return gf; } void compute(const int n_threads, ggml_tensor* pixel_values, ggml_tensor** output, ggml_context* output_ctx) { auto get_graph = [&]() -> struct ggml_cgraph* { return build_graph(pixel_values); }; GGMLRunner::compute(get_graph, n_threads, true, output, output_ctx); } }; struct SD3CLIPEmbedder : public Conditioner { CLIPTokenizer clip_l_tokenizer; CLIPTokenizer clip_g_tokenizer; T5UniGramTokenizer t5_tokenizer; std::shared_ptr clip_l; std::shared_ptr clip_g; std::shared_ptr t5; SD3CLIPEmbedder(ggml_backend_t backend, std::map& tensor_types, int clip_skip = -1) : clip_g_tokenizer(0) { if (clip_skip <= 0) { clip_skip = 2; } clip_l = std::make_shared(backend, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, clip_skip, false); clip_g = std::make_shared(backend, tensor_types, "text_encoders.clip_g.transformer.text_model", OPEN_CLIP_VIT_BIGG_14, clip_skip, false); t5 = std::make_shared(backend, tensor_types, "text_encoders.t5xxl.transformer"); } void set_clip_skip(int clip_skip) { clip_l->set_clip_skip(clip_skip); clip_g->set_clip_skip(clip_skip); } void get_param_tensors(std::map& tensors) { clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model"); clip_g->get_param_tensors(tensors, "text_encoders.clip_g.transformer.text_model"); t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer"); } void alloc_params_buffer() { clip_l->alloc_params_buffer(); clip_g->alloc_params_buffer(); t5->alloc_params_buffer(); } void free_params_buffer() { clip_l->free_params_buffer(); clip_g->free_params_buffer(); t5->free_params_buffer(); } size_t get_params_buffer_size() { size_t buffer_size = clip_l->get_params_buffer_size(); buffer_size += clip_g->get_params_buffer_size(); buffer_size += t5->get_params_buffer_size(); return buffer_size; } std::vector, std::vector>> tokenize(std::string text, size_t max_length = 0, bool padding = false) { auto parsed_attention = parse_prompt_attention(text); { std::stringstream ss; ss << "["; for (const auto& item : parsed_attention) { ss << "['" << item.first << "', " << item.second << "], "; } ss << "]"; LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str()); } auto on_new_token_cb = [&](std::string& str, std::vector& bpe_tokens) -> bool { return false; }; std::vector clip_l_tokens; std::vector clip_l_weights; std::vector clip_g_tokens; std::vector clip_g_weights; std::vector t5_tokens; std::vector t5_weights; for (const auto& item : parsed_attention) { const std::string& curr_text = item.first; float curr_weight = item.second; std::vector curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb); clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end()); clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight); curr_tokens = clip_g_tokenizer.encode(curr_text, on_new_token_cb); clip_g_tokens.insert(clip_g_tokens.end(), curr_tokens.begin(), curr_tokens.end()); clip_g_weights.insert(clip_g_weights.end(), curr_tokens.size(), curr_weight); curr_tokens = t5_tokenizer.Encode(curr_text, true); t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end()); t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight); } clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, max_length, padding); clip_g_tokenizer.pad_tokens(clip_g_tokens, clip_g_weights, max_length, padding); t5_tokenizer.pad_tokens(t5_tokens, t5_weights, max_length, padding); // for (int i = 0; i < clip_l_tokens.size(); i++) { // std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", "; // } // std::cout << std::endl; // for (int i = 0; i < clip_g_tokens.size(); i++) { // std::cout << clip_g_tokens[i] << ":" << clip_g_weights[i] << ", "; // } // std::cout << std::endl; // for (int i = 0; i < t5_tokens.size(); i++) { // std::cout << t5_tokens[i] << ":" << t5_weights[i] << ", "; // } // std::cout << std::endl; return {{clip_l_tokens, clip_l_weights}, {clip_g_tokens, clip_g_weights}, {t5_tokens, t5_weights}}; } SDCondition get_learned_condition_common(ggml_context* work_ctx, int n_threads, std::vector, std::vector>> token_and_weights, int clip_skip, bool force_zero_embeddings = false) { set_clip_skip(clip_skip); auto& clip_l_tokens = token_and_weights[0].first; auto& clip_l_weights = token_and_weights[0].second; auto& clip_g_tokens = token_and_weights[1].first; auto& clip_g_weights = token_and_weights[1].second; auto& t5_tokens = token_and_weights[2].first; auto& t5_weights = token_and_weights[2].second; int64_t t0 = ggml_time_ms(); struct ggml_tensor* hidden_states = NULL; // [N, n_token*2, 4096] struct ggml_tensor* chunk_hidden_states = NULL; // [n_token*2, 4096] struct ggml_tensor* chunk_hidden_states_l = NULL; // [n_token, hidden_size_l] struct ggml_tensor* chunk_hidden_states_g = NULL; // [n_token, hidden_size_g] struct ggml_tensor* chunk_hidden_states_t5 = NULL; // [n_token, hidden_size_t5] struct ggml_tensor* pooled = NULL; struct ggml_tensor* pooled_l = NULL; // [768,] struct ggml_tensor* pooled_g = NULL; // [1280,] std::vector hidden_states_vec; size_t chunk_len = 77; size_t chunk_count = clip_l_tokens.size() / chunk_len; for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) { // clip_l { std::vector chunk_tokens(clip_l_tokens.begin() + chunk_idx * chunk_len, clip_l_tokens.begin() + (chunk_idx + 1) * chunk_len); std::vector chunk_weights(clip_l_weights.begin() + chunk_idx * chunk_len, clip_l_weights.begin() + (chunk_idx + 1) * chunk_len); auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens); size_t max_token_idx = 0; clip_l->compute(n_threads, input_ids, 0, NULL, max_token_idx, false, &chunk_hidden_states_l, work_ctx); { auto tensor = chunk_hidden_states_l; float original_mean = ggml_tensor_mean(tensor); for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float value = ggml_tensor_get_f32(tensor, i0, i1, i2); value *= chunk_weights[i1]; ggml_tensor_set_f32(tensor, value, i0, i1, i2); } } } float new_mean = ggml_tensor_mean(tensor); ggml_tensor_scale(tensor, (original_mean / new_mean)); } if (chunk_idx == 0) { auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID); max_token_idx = std::min(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1); clip_l->compute(n_threads, input_ids, 0, NULL, max_token_idx, true, &pooled_l, work_ctx); } } // clip_g { std::vector chunk_tokens(clip_g_tokens.begin() + chunk_idx * chunk_len, clip_g_tokens.begin() + (chunk_idx + 1) * chunk_len); std::vector chunk_weights(clip_g_weights.begin() + chunk_idx * chunk_len, clip_g_weights.begin() + (chunk_idx + 1) * chunk_len); auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens); size_t max_token_idx = 0; clip_g->compute(n_threads, input_ids, 0, NULL, max_token_idx, false, &chunk_hidden_states_g, work_ctx); { auto tensor = chunk_hidden_states_g; float original_mean = ggml_tensor_mean(tensor); for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float value = ggml_tensor_get_f32(tensor, i0, i1, i2); value *= chunk_weights[i1]; ggml_tensor_set_f32(tensor, value, i0, i1, i2); } } } float new_mean = ggml_tensor_mean(tensor); ggml_tensor_scale(tensor, (original_mean / new_mean)); } if (chunk_idx == 0) { auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_g_tokenizer.EOS_TOKEN_ID); max_token_idx = std::min(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1); clip_g->compute(n_threads, input_ids, 0, NULL, max_token_idx, true, &pooled_g, work_ctx); } } // t5 { std::vector chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len, t5_tokens.begin() + (chunk_idx + 1) * chunk_len); std::vector chunk_weights(t5_weights.begin() + chunk_idx * chunk_len, t5_weights.begin() + (chunk_idx + 1) * chunk_len); auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens); t5->compute(n_threads, input_ids, &chunk_hidden_states_t5, work_ctx); { auto tensor = chunk_hidden_states_t5; float original_mean = ggml_tensor_mean(tensor); for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float value = ggml_tensor_get_f32(tensor, i0, i1, i2); value *= chunk_weights[i1]; ggml_tensor_set_f32(tensor, value, i0, i1, i2); } } } float new_mean = ggml_tensor_mean(tensor); ggml_tensor_scale(tensor, (original_mean / new_mean)); } } auto chunk_hidden_states_lg_pad = ggml_new_tensor_3d(work_ctx, chunk_hidden_states_l->type, 4096, chunk_hidden_states_l->ne[1], chunk_hidden_states_l->ne[2]); // [n_token, 4096] for (int i2 = 0; i2 < chunk_hidden_states_lg_pad->ne[2]; i2++) { for (int i1 = 0; i1 < chunk_hidden_states_lg_pad->ne[1]; i1++) { for (int i0 = 0; i0 < chunk_hidden_states_lg_pad->ne[0]; i0++) { float value = 0.f; if (i0 < chunk_hidden_states_l->ne[0]) { value = ggml_tensor_get_f32(chunk_hidden_states_l, i0, i1, i2); } else if (i0 < chunk_hidden_states_l->ne[0] + chunk_hidden_states_g->ne[0]) { value = ggml_tensor_get_f32(chunk_hidden_states_g, i0 - chunk_hidden_states_l->ne[0], i1, i2); } ggml_tensor_set_f32(chunk_hidden_states_lg_pad, value, i0, i1, i2); } } } chunk_hidden_states = ggml_tensor_concat(work_ctx, chunk_hidden_states_lg_pad, chunk_hidden_states_t5, 1); // [n_token*2, 4096] if (chunk_idx == 0) { pooled = ggml_tensor_concat(work_ctx, pooled_l, pooled_g, 0); // [768 + 1280] } int64_t t1 = ggml_time_ms(); LOG_DEBUG("computing condition graph completed, taking %" PRId64 " ms", t1 - t0); if (force_zero_embeddings) { float* vec = (float*)chunk_hidden_states->data; for (int i = 0; i < ggml_nelements(chunk_hidden_states); i++) { vec[i] = 0; } } hidden_states_vec.insert(hidden_states_vec.end(), (float*)chunk_hidden_states->data, ((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states)); } hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec); hidden_states = ggml_reshape_2d(work_ctx, hidden_states, chunk_hidden_states->ne[0], ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]); return SDCondition(hidden_states, pooled, NULL); } SDCondition get_learned_condition(ggml_context* work_ctx, int n_threads, const std::string& text, int clip_skip, int width, int height, int adm_in_channels = -1, bool force_zero_embeddings = false) { auto tokens_and_weights = tokenize(text, 77, true); return get_learned_condition_common(work_ctx, n_threads, tokens_and_weights, clip_skip, force_zero_embeddings); } std::tuple> get_learned_condition_with_trigger(ggml_context* work_ctx, int n_threads, const std::string& text, int clip_skip, int width, int height, int num_input_imgs, int adm_in_channels = -1, bool force_zero_embeddings = false) { GGML_ASSERT(0 && "Not implemented yet!"); } std::string remove_trigger_from_prompt(ggml_context* work_ctx, const std::string& prompt) { GGML_ASSERT(0 && "Not implemented yet!"); } }; struct FluxCLIPEmbedder : public Conditioner { CLIPTokenizer clip_l_tokenizer; T5UniGramTokenizer t5_tokenizer; std::shared_ptr clip_l; std::shared_ptr t5; FluxCLIPEmbedder(ggml_backend_t backend, std::map& tensor_types, int clip_skip = -1) { if (clip_skip <= 0) { clip_skip = 2; } clip_l = std::make_shared(backend, tensor_types, "text_encoders.clip_l.transformer.text_model", OPENAI_CLIP_VIT_L_14, clip_skip, true); t5 = std::make_shared(backend, tensor_types, "text_encoders.t5xxl.transformer"); } void set_clip_skip(int clip_skip) { clip_l->set_clip_skip(clip_skip); } void get_param_tensors(std::map& tensors) { clip_l->get_param_tensors(tensors, "text_encoders.clip_l.transformer.text_model"); t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer"); } void alloc_params_buffer() { clip_l->alloc_params_buffer(); t5->alloc_params_buffer(); } void free_params_buffer() { clip_l->free_params_buffer(); t5->free_params_buffer(); } size_t get_params_buffer_size() { size_t buffer_size = clip_l->get_params_buffer_size(); buffer_size += t5->get_params_buffer_size(); return buffer_size; } std::vector, std::vector>> tokenize(std::string text, size_t max_length = 0, bool padding = false) { auto parsed_attention = parse_prompt_attention(text); { std::stringstream ss; ss << "["; for (const auto& item : parsed_attention) { ss << "['" << item.first << "', " << item.second << "], "; } ss << "]"; LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str()); } auto on_new_token_cb = [&](std::string& str, std::vector& bpe_tokens) -> bool { return false; }; std::vector clip_l_tokens; std::vector clip_l_weights; std::vector t5_tokens; std::vector t5_weights; for (const auto& item : parsed_attention) { const std::string& curr_text = item.first; float curr_weight = item.second; std::vector curr_tokens = clip_l_tokenizer.encode(curr_text, on_new_token_cb); clip_l_tokens.insert(clip_l_tokens.end(), curr_tokens.begin(), curr_tokens.end()); clip_l_weights.insert(clip_l_weights.end(), curr_tokens.size(), curr_weight); curr_tokens = t5_tokenizer.Encode(curr_text, true); t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end()); t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight); } clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding); t5_tokenizer.pad_tokens(t5_tokens, t5_weights, max_length, padding); // for (int i = 0; i < clip_l_tokens.size(); i++) { // std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", "; // } // std::cout << std::endl; // for (int i = 0; i < t5_tokens.size(); i++) { // std::cout << t5_tokens[i] << ":" << t5_weights[i] << ", "; // } // std::cout << std::endl; return {{clip_l_tokens, clip_l_weights}, {t5_tokens, t5_weights}}; } SDCondition get_learned_condition_common(ggml_context* work_ctx, int n_threads, std::vector, std::vector>> token_and_weights, int clip_skip, bool force_zero_embeddings = false) { set_clip_skip(clip_skip); auto& clip_l_tokens = token_and_weights[0].first; auto& clip_l_weights = token_and_weights[0].second; auto& t5_tokens = token_and_weights[1].first; auto& t5_weights = token_and_weights[1].second; int64_t t0 = ggml_time_ms(); struct ggml_tensor* hidden_states = NULL; // [N, n_token, 4096] struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, 4096] struct ggml_tensor* pooled = NULL; // [768,] std::vector hidden_states_vec; size_t chunk_len = 256; size_t chunk_count = t5_tokens.size() / chunk_len; for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) { // clip_l if (chunk_idx == 0) { size_t chunk_len_l = 77; std::vector chunk_tokens(clip_l_tokens.begin(), clip_l_tokens.begin() + chunk_len_l); std::vector chunk_weights(clip_l_weights.begin(), clip_l_weights.begin() + chunk_len_l); auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens); size_t max_token_idx = 0; auto it = std::find(chunk_tokens.begin(), chunk_tokens.end(), clip_l_tokenizer.EOS_TOKEN_ID); max_token_idx = std::min(std::distance(chunk_tokens.begin(), it), chunk_tokens.size() - 1); clip_l->compute(n_threads, input_ids, 0, NULL, max_token_idx, true, &pooled, work_ctx); } // t5 { std::vector chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len, t5_tokens.begin() + (chunk_idx + 1) * chunk_len); std::vector chunk_weights(t5_weights.begin() + chunk_idx * chunk_len, t5_weights.begin() + (chunk_idx + 1) * chunk_len); auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens); t5->compute(n_threads, input_ids, &chunk_hidden_states, work_ctx); { auto tensor = chunk_hidden_states; float original_mean = ggml_tensor_mean(tensor); for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float value = ggml_tensor_get_f32(tensor, i0, i1, i2); value *= chunk_weights[i1]; ggml_tensor_set_f32(tensor, value, i0, i1, i2); } } } float new_mean = ggml_tensor_mean(tensor); ggml_tensor_scale(tensor, (original_mean / new_mean)); } } int64_t t1 = ggml_time_ms(); LOG_DEBUG("computing condition graph completed, taking %" PRId64 " ms", t1 - t0); if (force_zero_embeddings) { float* vec = (float*)chunk_hidden_states->data; for (int i = 0; i < ggml_nelements(chunk_hidden_states); i++) { vec[i] = 0; } } hidden_states_vec.insert(hidden_states_vec.end(), (float*)chunk_hidden_states->data, ((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states)); } hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec); hidden_states = ggml_reshape_2d(work_ctx, hidden_states, chunk_hidden_states->ne[0], ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]); return SDCondition(hidden_states, pooled, NULL); } SDCondition get_learned_condition(ggml_context* work_ctx, int n_threads, const std::string& text, int clip_skip, int width, int height, int adm_in_channels = -1, bool force_zero_embeddings = false) { auto tokens_and_weights = tokenize(text, 256, true); return get_learned_condition_common(work_ctx, n_threads, tokens_and_weights, clip_skip, force_zero_embeddings); } std::tuple> get_learned_condition_with_trigger(ggml_context* work_ctx, int n_threads, const std::string& text, int clip_skip, int width, int height, int num_input_imgs, int adm_in_channels = -1, bool force_zero_embeddings = false) { GGML_ASSERT(0 && "Not implemented yet!"); } std::string remove_trigger_from_prompt(ggml_context* work_ctx, const std::string& prompt) { GGML_ASSERT(0 && "Not implemented yet!"); } }; #endif