#include "ggml_extend.hpp" #include "model.h" #include "rng.hpp" #include "rng_philox.hpp" #include "stable-diffusion.h" #include "util.h" #include "conditioner.hpp" #include "control.hpp" #include "denoiser.hpp" #include "diffusion_model.hpp" #include "esrgan.hpp" #include "lora.hpp" #include "pmid.hpp" #include "tae.hpp" #include "vae.hpp" #include "stb_image.h" #include #include static std::string pending_apply_lora_fname = ""; static float pending_apply_lora_power = 1.0f; const char* model_version_to_str[] = { "SD 1.x", "SD 2.x", "SDXL", "SVD", "SD3.x", "Flux"}; const char* sampling_methods_str[] = { "Euler A", "Euler", "Heun", "DPM2", "DPM++ (2s)", "DPM++ (2M)", "modified DPM++ (2M)", "iPNDM", "iPNDM_v", "LCM", }; /*================================================== Helper Functions ================================================*/ void calculate_alphas_cumprod(float* alphas_cumprod, float linear_start = 0.00085f, float linear_end = 0.0120, int timesteps = TIMESTEPS) { float ls_sqrt = sqrtf(linear_start); float le_sqrt = sqrtf(linear_end); float amount = le_sqrt - ls_sqrt; float product = 1.0f; for (int i = 0; i < timesteps; i++) { float beta = ls_sqrt + amount * ((float)i / (timesteps - 1)); product *= 1.0f - powf(beta, 2.0f); alphas_cumprod[i] = product; } } /*=============================================== StableDiffusionGGML ================================================*/ class StableDiffusionGGML { public: ggml_backend_t backend = NULL; // general backend ggml_backend_t clip_backend = NULL; ggml_backend_t control_net_backend = NULL; ggml_backend_t vae_backend = NULL; ggml_type model_wtype = GGML_TYPE_COUNT; ggml_type conditioner_wtype = GGML_TYPE_COUNT; ggml_type diffusion_model_wtype = GGML_TYPE_COUNT; ggml_type vae_wtype = GGML_TYPE_COUNT; SDVersion version; bool vae_decode_only = false; bool free_params_immediately = false; std::shared_ptr rng = std::make_shared(); int n_threads = -1; float scale_factor = 0.18215f; std::shared_ptr cond_stage_model; std::shared_ptr clip_vision; // for svd std::shared_ptr diffusion_model; std::shared_ptr first_stage_model; std::shared_ptr tae_first_stage; std::shared_ptr control_net; std::shared_ptr pmid_model; std::shared_ptr pmid_lora; std::shared_ptr pmid_id_embeds; std::string taesd_path; bool use_tiny_autoencoder = false; bool vae_tiling = false; bool stacked_id = false; std::map tensors; std::string lora_model_dir; // lora_name => multiplier std::unordered_map curr_lora_state; std::shared_ptr denoiser = std::make_shared(); StableDiffusionGGML() = default; StableDiffusionGGML(int n_threads, bool vae_decode_only, bool free_params_immediately, std::string lora_model_dir, rng_type_t rng_type) : n_threads(n_threads), vae_decode_only(vae_decode_only), free_params_immediately(free_params_immediately), lora_model_dir(lora_model_dir) { if (rng_type == STD_DEFAULT_RNG) { rng = std::make_shared(); } else if (rng_type == CUDA_RNG) { rng = std::make_shared(); } } ~StableDiffusionGGML() { if (clip_backend != backend) { ggml_backend_free(clip_backend); } if (control_net_backend != backend) { ggml_backend_free(control_net_backend); } if (vae_backend != backend) { ggml_backend_free(vae_backend); } ggml_backend_free(backend); } bool load_from_file(const std::string& model_path, const std::string& clip_l_path, const std::string& clip_g_path, const std::string& t5xxl_path, const std::string& diffusion_model_path, const std::string& vae_path, const std::string control_net_path, const std::string embeddings_path, const std::string id_embeddings_path, const std::string& taesd_path, bool vae_tiling_, ggml_type wtype, schedule_t schedule, bool clip_on_cpu, bool control_net_cpu, bool vae_on_cpu, bool diffusion_flash_attn) { use_tiny_autoencoder = taesd_path.size() > 0; std::string taesd_path_fixed = taesd_path; #ifdef SD_USE_CUBLAS LOG_DEBUG("Using CUDA backend"); backend = ggml_backend_cuda_init(0); #endif #ifdef SD_USE_METAL LOG_DEBUG("Using Metal backend"); backend = ggml_backend_metal_init(); #endif #ifdef SD_USE_VULKAN LOG_DEBUG("Using Vulkan backend"); for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) { backend = ggml_backend_vk_init(device); } if (!backend) { LOG_WARN("Failed to initialize Vulkan backend"); } #endif #ifdef SD_USE_SYCL LOG_DEBUG("Using SYCL backend"); backend = ggml_backend_sycl_init(0); #endif if (!backend) { LOG_DEBUG("Using CPU backend"); backend = ggml_backend_cpu_init(); } ModelLoader model_loader; vae_tiling = vae_tiling_; if (model_path.size() > 0) { LOG_INFO("loading model from '%s'", model_path.c_str()); if (!model_loader.init_from_file(model_path)) { LOG_ERROR("init model loader from file failed: '%s'", model_path.c_str()); } } if (clip_l_path.size() > 0) { LOG_INFO("loading clip_l from '%s'", clip_l_path.c_str()); if (!model_loader.init_from_file(clip_l_path, "text_encoders.clip_l.transformer.")) { LOG_WARN("loading clip_l from '%s' failed", clip_l_path.c_str()); } } if (clip_g_path.size() > 0) { LOG_INFO("loading clip_g from '%s'", clip_g_path.c_str()); if (!model_loader.init_from_file(clip_g_path, "text_encoders.clip_g.transformer.")) { LOG_WARN("loading clip_g from '%s' failed", clip_g_path.c_str()); } } if (t5xxl_path.size() > 0) { LOG_INFO("loading t5xxl from '%s'", t5xxl_path.c_str()); if (!model_loader.init_from_file(t5xxl_path, "text_encoders.t5xxl.transformer.")) { LOG_WARN("loading t5xxl from '%s' failed", t5xxl_path.c_str()); } } if (diffusion_model_path.size() > 0) { LOG_INFO("loading diffusion model from '%s'", diffusion_model_path.c_str()); if (!model_loader.init_from_file(diffusion_model_path, "model.diffusion_model.")) { LOG_WARN("loading diffusion model from '%s' failed", diffusion_model_path.c_str()); } } if (vae_path.size() > 0) { LOG_INFO("loading vae from '%s'", vae_path.c_str()); if (!model_loader.init_from_file(vae_path, "vae.")) { LOG_WARN("loading vae from '%s' failed", vae_path.c_str()); } } version = model_loader.get_sd_version(); if (version == VERSION_COUNT && model_path.size() > 0 && clip_l_path.size() > 0 && diffusion_model_path.size() == 0 && t5xxl_path.size() > 0) { bool endswithsafetensors = (model_path.rfind(".safetensors") == model_path.size() - 12); if(endswithsafetensors && !model_loader.has_diffusion_model_tensors()) { LOG_INFO("SD Diffusion Model tensors missing! Fallback trying alternative tensor names...\n"); if (!model_loader.init_from_file(model_path, "model.diffusion_model.")) { LOG_WARN("loading diffusion model from '%s' failed", model_path.c_str()); } version = model_loader.get_sd_version(); } } if (version == VERSION_COUNT) { LOG_ERROR("Error: get SD version from file failed: '%s'", model_path.c_str()); return false; } LOG_INFO("Version: %s ", model_version_to_str[version]); if(use_tiny_autoencoder) { std::string to_search = "taesd.embd"; std::string to_replace = ""; if(version==VERSION_SDXL) { to_replace = "taesd_xl.embd"; } else if(version==VERSION_FLUX) { to_replace = "taesd_f.embd"; } else if(version==VERSION_SD3) { to_replace = "taesd_3.embd"; } if(to_replace!="") { size_t pos = taesd_path_fixed.find(to_search); if (pos != std::string::npos) { taesd_path_fixed.replace(pos, to_search.length(), to_replace); } } } if (wtype == GGML_TYPE_COUNT) { model_wtype = model_loader.get_sd_wtype(); if (model_wtype == GGML_TYPE_COUNT) { model_wtype = GGML_TYPE_F32; LOG_WARN("can not get mode wtype frome weight, use f32"); } conditioner_wtype = model_loader.get_conditioner_wtype(); if (conditioner_wtype == GGML_TYPE_COUNT) { conditioner_wtype = wtype; } diffusion_model_wtype = model_loader.get_diffusion_model_wtype(); if (diffusion_model_wtype == GGML_TYPE_COUNT) { diffusion_model_wtype = wtype; } vae_wtype = model_loader.get_vae_wtype(); if (vae_wtype == GGML_TYPE_COUNT) { vae_wtype = wtype; } } else { model_wtype = wtype; conditioner_wtype = wtype; diffusion_model_wtype = wtype; vae_wtype = wtype; model_loader.set_wtype_override(wtype); } if (version == VERSION_SDXL) { vae_wtype = GGML_TYPE_F32; model_loader.set_wtype_override(GGML_TYPE_F32, "vae."); } LOG_INFO("Weight type: %s", model_wtype != SD_TYPE_COUNT ? ggml_type_name(model_wtype) : "??"); LOG_INFO("Conditioner weight type: %s", conditioner_wtype != SD_TYPE_COUNT ? ggml_type_name(conditioner_wtype) : "??"); LOG_INFO("Diffusion model weight type: %s", diffusion_model_wtype != SD_TYPE_COUNT ? ggml_type_name(diffusion_model_wtype) : "??"); LOG_INFO("VAE weight type: %s", vae_wtype != SD_TYPE_COUNT ? ggml_type_name(vae_wtype) : "??"); LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor)); if (version == VERSION_SDXL) { scale_factor = 0.13025f; if (vae_path.size() == 0 && taesd_path_fixed.size() == 0) { LOG_WARN( "!!!It looks like you are using SDXL model. " "If you find that the generated images are completely black, " "try specifying SDXL VAE FP16 Fix with the --vae parameter. " "You can find it here: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors"); } } else if (sd_version_is_sd3(version)) { scale_factor = 1.5305f; } else if (sd_version_is_flux(version)) { scale_factor = 0.3611; // TODO: shift_factor } if (version == VERSION_SVD) { clip_vision = std::make_shared(backend, model_loader.tensor_storages_types); clip_vision->alloc_params_buffer(); clip_vision->get_param_tensors(tensors); diffusion_model = std::make_shared(backend, model_loader.tensor_storages_types, version); diffusion_model->alloc_params_buffer(); diffusion_model->get_param_tensors(tensors); first_stage_model = std::make_shared(backend, model_loader.tensor_storages_types, "first_stage_model", vae_decode_only, true, version); LOG_DEBUG("vae_decode_only %d", vae_decode_only); first_stage_model->alloc_params_buffer(); first_stage_model->get_param_tensors(tensors, "first_stage_model"); } else { clip_backend = backend; bool use_t5xxl = false; if (sd_version_is_dit(version)) { use_t5xxl = true; } if (!ggml_backend_is_cpu(backend) && use_t5xxl && conditioner_wtype != GGML_TYPE_F32) { clip_on_cpu = true; LOG_INFO("set clip_on_cpu to true"); } if (clip_on_cpu && !ggml_backend_is_cpu(backend)) { LOG_INFO("CLIP: Using CPU backend"); clip_backend = ggml_backend_cpu_init(); } if (diffusion_flash_attn) { LOG_INFO("Using flash attention in the diffusion model"); } if (sd_version_is_sd3(version)) { if (diffusion_flash_attn) { LOG_WARN("flash attention in this diffusion model is currently unsupported!"); } cond_stage_model = std::make_shared(clip_backend, model_loader.tensor_storages_types); diffusion_model = std::make_shared(backend, model_loader.tensor_storages_types); } else if (sd_version_is_flux(version)) { cond_stage_model = std::make_shared(clip_backend, model_loader.tensor_storages_types); diffusion_model = std::make_shared(backend, model_loader.tensor_storages_types, diffusion_flash_attn); } else { if (id_embeddings_path.find("v2") != std::string::npos) { cond_stage_model = std::make_shared(clip_backend, model_loader.tensor_storages_types, embeddings_path, version, PM_VERSION_2); } else { cond_stage_model = std::make_shared(clip_backend, model_loader.tensor_storages_types, embeddings_path, version); } diffusion_model = std::make_shared(backend, model_loader.tensor_storages_types, version, diffusion_flash_attn); } cond_stage_model->alloc_params_buffer(); cond_stage_model->get_param_tensors(tensors); diffusion_model->alloc_params_buffer(); diffusion_model->get_param_tensors(tensors); if (!use_tiny_autoencoder) { if (vae_on_cpu && !ggml_backend_is_cpu(backend)) { LOG_INFO("VAE Autoencoder: Using CPU backend"); vae_backend = ggml_backend_cpu_init(); } else { vae_backend = backend; } first_stage_model = std::make_shared(vae_backend, model_loader.tensor_storages_types, "first_stage_model", vae_decode_only, false, version); first_stage_model->alloc_params_buffer(); first_stage_model->get_param_tensors(tensors, "first_stage_model"); } else { tae_first_stage = std::make_shared(backend, model_loader.tensor_storages_types, "decoder.layers", vae_decode_only, version); } // first_stage_model->get_param_tensors(tensors, "first_stage_model."); if (control_net_path.size() > 0) { ggml_backend_t controlnet_backend = NULL; if (control_net_cpu && !ggml_backend_is_cpu(backend)) { LOG_DEBUG("ControlNet: Using CPU backend"); controlnet_backend = ggml_backend_cpu_init(); } else { controlnet_backend = backend; } control_net = std::make_shared(controlnet_backend, model_loader.tensor_storages_types, version); } if (id_embeddings_path.find("v2") != std::string::npos) { pmid_model = std::make_shared(backend, model_loader.tensor_storages_types, "pmid", version, PM_VERSION_2); LOG_INFO("using PhotoMaker Version 2"); } else { pmid_model = std::make_shared(backend, model_loader.tensor_storages_types, "pmid", version); } if (id_embeddings_path.size() > 0) { pmid_lora = std::make_shared(backend, id_embeddings_path, ""); if (!pmid_lora->load_from_file(true)) { LOG_WARN("load photomaker lora tensors from %s failed", id_embeddings_path.c_str()); return false; } LOG_INFO("loading stacked ID embedding (PHOTOMAKER) model file from '%s'", id_embeddings_path.c_str()); if (!model_loader.init_from_file(id_embeddings_path, "pmid.")) { LOG_WARN("loading stacked ID embedding from '%s' failed", id_embeddings_path.c_str()); } else { stacked_id = true; } } if (stacked_id) { if (!pmid_model->alloc_params_buffer()) { LOG_ERROR(" pmid model params buffer allocation failed"); return false; } pmid_model->get_param_tensors(tensors, "pmid"); } } struct ggml_init_params params; params.mem_size = static_cast(10 * 1024) * 1024; // 10M params.mem_buffer = NULL; params.no_alloc = false; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* ctx = ggml_init(params); // for alphas_cumprod and is_using_v_parameterization check GGML_ASSERT(ctx != NULL); ggml_tensor* alphas_cumprod_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, TIMESTEPS); calculate_alphas_cumprod((float*)alphas_cumprod_tensor->data); // load weights LOG_DEBUG("loading weights"); int64_t t0 = ggml_time_ms(); std::set ignore_tensors; tensors["alphas_cumprod"] = alphas_cumprod_tensor; if (use_tiny_autoencoder) { ignore_tensors.insert("first_stage_model."); } if (stacked_id) { ignore_tensors.insert("lora."); } if (vae_decode_only) { ignore_tensors.insert("first_stage_model.encoder"); ignore_tensors.insert("first_stage_model.quant"); } if (version == VERSION_SVD) { ignore_tensors.insert("conditioner.embedders.3"); } bool success = model_loader.load_tensors(tensors, backend, ignore_tensors); if (!success) { LOG_ERROR("load tensors from model loader failed"); ggml_free(ctx); return false; } // LOG_DEBUG("model size = %.2fMB", total_size / 1024.0 / 1024.0); if (version == VERSION_SVD) { // diffusion_model->test(); // first_stage_model->test(); // return false; } else { size_t clip_params_mem_size = cond_stage_model->get_params_buffer_size(); size_t unet_params_mem_size = diffusion_model->get_params_buffer_size(); size_t vae_params_mem_size = 0; if (!use_tiny_autoencoder) { vae_params_mem_size = first_stage_model->get_params_buffer_size(); } else { if (!tae_first_stage->load_from_file(taesd_path_fixed)) { return false; } vae_params_mem_size = tae_first_stage->get_params_buffer_size(); } size_t control_net_params_mem_size = 0; if (control_net) { if (!control_net->load_from_file(control_net_path)) { return false; } control_net_params_mem_size = control_net->get_params_buffer_size(); } size_t pmid_params_mem_size = 0; if (stacked_id) { pmid_params_mem_size = pmid_model->get_params_buffer_size(); } size_t total_params_ram_size = 0; size_t total_params_vram_size = 0; if (ggml_backend_is_cpu(clip_backend)) { total_params_ram_size += clip_params_mem_size + pmid_params_mem_size; } else { total_params_vram_size += clip_params_mem_size + pmid_params_mem_size; } if (ggml_backend_is_cpu(backend)) { total_params_ram_size += unet_params_mem_size; } else { total_params_vram_size += unet_params_mem_size; } if (ggml_backend_is_cpu(vae_backend)) { total_params_ram_size += vae_params_mem_size; } else { total_params_vram_size += vae_params_mem_size; } if (ggml_backend_is_cpu(control_net_backend)) { total_params_ram_size += control_net_params_mem_size; } else { total_params_vram_size += control_net_params_mem_size; } size_t total_params_size = total_params_ram_size + total_params_vram_size; LOG_INFO( "total params memory size = %.2fMB (VRAM %.2fMB, RAM %.2fMB): " "clip %.2fMB(%s), unet %.2fMB(%s), vae %.2fMB(%s), controlnet %.2fMB(%s), pmid %.2fMB(%s)", total_params_size / 1024.0 / 1024.0, total_params_vram_size / 1024.0 / 1024.0, total_params_ram_size / 1024.0 / 1024.0, clip_params_mem_size / 1024.0 / 1024.0, ggml_backend_is_cpu(clip_backend) ? "RAM" : "VRAM", unet_params_mem_size / 1024.0 / 1024.0, ggml_backend_is_cpu(backend) ? "RAM" : "VRAM", vae_params_mem_size / 1024.0 / 1024.0, ggml_backend_is_cpu(vae_backend) ? "RAM" : "VRAM", control_net_params_mem_size / 1024.0 / 1024.0, ggml_backend_is_cpu(control_net_backend) ? "RAM" : "VRAM", pmid_params_mem_size / 1024.0 / 1024.0, ggml_backend_is_cpu(clip_backend) ? "RAM" : "VRAM"); } int64_t t1 = ggml_time_ms(); LOG_INFO("loading model from '%s' completed, taking %.2fs", model_path.c_str(), (t1 - t0) * 1.0f / 1000); // check is_using_v_parameterization_for_sd2 bool is_using_v_parameterization = false; if (version == VERSION_SD2) { if (is_using_v_parameterization_for_sd2(ctx)) { is_using_v_parameterization = true; } } else if (version == VERSION_SVD) { // TODO: V_PREDICTION_EDM is_using_v_parameterization = true; } if (sd_version_is_sd3(version)) { LOG_INFO("running in FLOW mode"); denoiser = std::make_shared(); } else if (sd_version_is_flux(version)) { LOG_INFO("running in Flux FLOW mode"); float shift = 1.0f; // TODO: validate for (auto pair : model_loader.tensor_storages_types) { if (pair.first.find("model.diffusion_model.guidance_in.in_layer.weight") != std::string::npos) { shift = 1.15f; break; } } denoiser = std::make_shared(shift); } else if (is_using_v_parameterization) { LOG_INFO("running in v-prediction mode"); denoiser = std::make_shared(); } else { LOG_INFO("running in eps-prediction mode"); } if (schedule != DEFAULT) { switch (schedule) { case DISCRETE: LOG_INFO("running with discrete schedule"); denoiser->schedule = std::make_shared(); break; case KARRAS: LOG_INFO("running with Karras schedule"); denoiser->schedule = std::make_shared(); break; case EXPONENTIAL: LOG_INFO("running exponential schedule"); denoiser->schedule = std::make_shared(); break; case AYS: LOG_INFO("Running with Align-Your-Steps schedule"); denoiser->schedule = std::make_shared(); denoiser->schedule->version = version; break; case GITS: LOG_INFO("Running with GITS schedule"); denoiser->schedule = std::make_shared(); denoiser->schedule->version = version; break; case DEFAULT: // Don't touch anything. break; default: LOG_ERROR("Unknown schedule %i", schedule); abort(); } } auto comp_vis_denoiser = std::dynamic_pointer_cast(denoiser); if (comp_vis_denoiser) { for (int i = 0; i < TIMESTEPS; i++) { comp_vis_denoiser->sigmas[i] = std::sqrt((1 - ((float*)alphas_cumprod_tensor->data)[i]) / ((float*)alphas_cumprod_tensor->data)[i]); comp_vis_denoiser->log_sigmas[i] = std::log(comp_vis_denoiser->sigmas[i]); } } LOG_DEBUG("finished loaded file"); ggml_free(ctx); return true; } bool is_using_v_parameterization_for_sd2(ggml_context* work_ctx) { struct ggml_tensor* x_t = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 8, 8, 4, 1); ggml_set_f32(x_t, 0.5); struct ggml_tensor* c = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 1024, 2, 1, 1); ggml_set_f32(c, 0.5); struct ggml_tensor* timesteps = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 1); ggml_set_f32(timesteps, 999); int64_t t0 = ggml_time_ms(); struct ggml_tensor* out = ggml_dup_tensor(work_ctx, x_t); diffusion_model->compute(n_threads, x_t, timesteps, c, NULL, NULL, NULL, -1, {}, 0.f, &out); diffusion_model->free_compute_buffer(); double result = 0.f; { float* vec_x = (float*)x_t->data; float* vec_out = (float*)out->data; int64_t n = ggml_nelements(out); for (int i = 0; i < n; i++) { result += ((double)vec_out[i] - (double)vec_x[i]); } result /= n; } int64_t t1 = ggml_time_ms(); LOG_DEBUG("check is_using_v_parameterization_for_sd2, taking %.2fs", (t1 - t0) * 1.0f / 1000); return result < -1; } void set_pending_lora(const std::string& lora_path, float multiplier) { pending_apply_lora_fname = lora_path; pending_apply_lora_power = multiplier; } void apply_lora_from_file(const std::string& lora_path, float multiplier) { int64_t t0 = ggml_time_ms(); std::string st_file_path = lora_path; std::string file_path; if (file_exists(st_file_path)) { file_path = st_file_path; } else { LOG_WARN("can not find %s for lora %s", st_file_path.c_str(), lora_path.c_str()); return; } LoraModel lora(backend, file_path); if (!lora.load_from_file()) { LOG_WARN("load lora tensors from %s failed", file_path.c_str()); return; } lora.multiplier = multiplier; lora.apply(tensors, n_threads); lora.free_params_buffer(); int64_t t1 = ggml_time_ms(); LOG_INFO("lora '%s' applied, taking %.2fs", lora_path.c_str(), (t1 - t0) * 1.0f / 1000); } void apply_lora(const std::string& lora_name, float multiplier) { int64_t t0 = ggml_time_ms(); std::string st_file_path = path_join(lora_model_dir, lora_name + ".safetensors"); std::string ckpt_file_path = path_join(lora_model_dir, lora_name + ".ckpt"); std::string file_path; if (file_exists(st_file_path)) { file_path = st_file_path; } else if (file_exists(ckpt_file_path)) { file_path = ckpt_file_path; } else { LOG_WARN("can not find %s or %s for lora %s", st_file_path.c_str(), ckpt_file_path.c_str(), lora_name.c_str()); return; } LoraModel lora(backend, file_path); if (!lora.load_from_file()) { LOG_WARN("load lora tensors from %s failed", file_path.c_str()); return; } lora.multiplier = multiplier; lora.apply(tensors, n_threads); lora.free_params_buffer(); int64_t t1 = ggml_time_ms(); LOG_INFO("lora '%s' applied, taking %.2fs", lora_name.c_str(), (t1 - t0) * 1.0f / 1000); } void apply_loras(const std::unordered_map& lora_state) { if (lora_state.size() > 0 && model_wtype != GGML_TYPE_F16 && model_wtype != GGML_TYPE_F32) { LOG_WARN("In quantized models when applying LoRA, the images have poor quality."); } std::unordered_map lora_state_diff; for (auto& kv : lora_state) { const std::string& lora_name = kv.first; float multiplier = kv.second; if (curr_lora_state.find(lora_name) != curr_lora_state.end()) { float curr_multiplier = curr_lora_state[lora_name]; float multiplier_diff = multiplier - curr_multiplier; if (multiplier_diff != 0.f) { lora_state_diff[lora_name] = multiplier_diff; } } else { lora_state_diff[lora_name] = multiplier; } } LOG_INFO("Attempting to apply %lu LoRAs", lora_state.size()); for (auto& kv : lora_state_diff) { apply_lora(kv.first, kv.second); } curr_lora_state = lora_state; } ggml_tensor* id_encoder(ggml_context* work_ctx, ggml_tensor* init_img, ggml_tensor* prompts_embeds, ggml_tensor* id_embeds, std::vector& class_tokens_mask) { ggml_tensor* res = NULL; pmid_model->compute(n_threads, init_img, prompts_embeds, id_embeds, class_tokens_mask, &res, work_ctx); return res; } SDCondition get_svd_condition(ggml_context* work_ctx, sd_image_t init_image, int width, int height, int fps = 6, int motion_bucket_id = 127, float augmentation_level = 0.f, bool force_zero_embeddings = false) { // c_crossattn int64_t t0 = ggml_time_ms(); struct ggml_tensor* c_crossattn = NULL; { if (force_zero_embeddings) { c_crossattn = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, clip_vision->vision_model.projection_dim); ggml_set_f32(c_crossattn, 0.f); } else { sd_image_f32_t image = sd_image_t_to_sd_image_f32_t(init_image); sd_image_f32_t resized_image = clip_preprocess(image, clip_vision->vision_model.image_size); free(image.data); image.data = NULL; ggml_tensor* pixel_values = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, resized_image.width, resized_image.height, 3, 1); sd_image_f32_to_tensor(resized_image.data, pixel_values, false); free(resized_image.data); resized_image.data = NULL; // print_ggml_tensor(pixel_values); clip_vision->compute(n_threads, pixel_values, &c_crossattn, work_ctx); // print_ggml_tensor(c_crossattn); } } // c_concat struct ggml_tensor* c_concat = NULL; { if (force_zero_embeddings) { c_concat = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width / 8, height / 8, 4, 1); ggml_set_f32(c_concat, 0.f); } else { ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); if (width != init_image.width || height != init_image.height) { sd_image_f32_t image = sd_image_t_to_sd_image_f32_t(init_image); sd_image_f32_t resized_image = resize_sd_image_f32_t(image, width, height); free(image.data); image.data = NULL; sd_image_f32_to_tensor(resized_image.data, init_img, false); free(resized_image.data); resized_image.data = NULL; } else { sd_image_to_tensor(init_image.data, init_img); } if (augmentation_level > 0.f) { struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, init_img); ggml_tensor_set_f32_randn(noise, rng); // encode_pixels += torch.randn_like(pixels) * augmentation_level ggml_tensor_scale(noise, augmentation_level); ggml_tensor_add(init_img, noise); } ggml_tensor* moments = encode_first_stage(work_ctx, init_img); c_concat = get_first_stage_encoding(work_ctx, moments); } } // y struct ggml_tensor* y = NULL; { y = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, diffusion_model->get_adm_in_channels()); int out_dim = 256; int fps_id = fps - 1; std::vector timesteps = {(float)fps_id, (float)motion_bucket_id, augmentation_level}; set_timestep_embedding(timesteps, y, out_dim); } int64_t t1 = ggml_time_ms(); LOG_DEBUG("computing svd condition graph completed, taking %d ms", (int)(t1 - t0)); return {c_crossattn, y, c_concat}; } ggml_tensor* sample(ggml_context* work_ctx, ggml_tensor* init_latent, ggml_tensor* noise, SDCondition cond, SDCondition uncond, ggml_tensor* control_hint, float control_strength, float min_cfg, float cfg_scale, float guidance, sample_method_t method, const std::vector& sigmas, int start_merge_step, SDCondition id_cond, std::vector skip_layers = {}, float slg_scale = 0, float skip_layer_start = 0.01, float skip_layer_end = 0.2) { size_t steps = sigmas.size() - 1; // noise = load_tensor_from_file(work_ctx, "./rand0.bin"); // print_ggml_tensor(noise); struct ggml_tensor* x = ggml_dup_tensor(work_ctx, init_latent); copy_ggml_tensor(x, init_latent); x = denoiser->noise_scaling(sigmas[0], noise, x); struct ggml_tensor* noised_input = ggml_dup_tensor(work_ctx, noise); bool has_unconditioned = cfg_scale != 1.0 && uncond.c_crossattn != NULL; bool has_skiplayer = slg_scale != 0.0 && skip_layers.size() > 0; // denoise wrapper struct ggml_tensor* out_cond = ggml_dup_tensor(work_ctx, x); struct ggml_tensor* out_uncond = NULL; struct ggml_tensor* out_skip = NULL; if (has_unconditioned) { out_uncond = ggml_dup_tensor(work_ctx, x); } if (has_skiplayer) { if (sd_version_is_dit(version)) { out_skip = ggml_dup_tensor(work_ctx, x); } else { has_skiplayer = false; LOG_WARN("SLG is incompatible with %s models", model_version_to_str[version]); } } struct ggml_tensor* denoised = ggml_dup_tensor(work_ctx, x); auto denoise = [&](ggml_tensor* input, float sigma, int step) -> ggml_tensor* { if (step == 1) { pretty_progress(0, (int)steps, 0); } int64_t t0 = ggml_time_us(); std::vector scaling = denoiser->get_scalings(sigma); GGML_ASSERT(scaling.size() == 3); float c_skip = scaling[0]; float c_out = scaling[1]; float c_in = scaling[2]; float t = denoiser->sigma_to_t(sigma); std::vector timesteps_vec(x->ne[3], t); // [N, ] auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec); std::vector guidance_vec(x->ne[3], guidance); auto guidance_tensor = vector_to_ggml_tensor(work_ctx, guidance_vec); copy_ggml_tensor(noised_input, input); // noised_input = noised_input * c_in ggml_tensor_scale(noised_input, c_in); std::vector controls; if (control_hint != NULL) { control_net->compute(n_threads, noised_input, control_hint, timesteps, cond.c_crossattn, cond.c_vector); controls = control_net->controls; // print_ggml_tensor(controls[12]); // GGML_ASSERT(0); } if (start_merge_step == -1 || step <= start_merge_step) { // cond diffusion_model->compute(n_threads, noised_input, timesteps, cond.c_crossattn, cond.c_concat, cond.c_vector, guidance_tensor, -1, controls, control_strength, &out_cond); } else { diffusion_model->compute(n_threads, noised_input, timesteps, id_cond.c_crossattn, cond.c_concat, id_cond.c_vector, guidance_tensor, -1, controls, control_strength, &out_cond); } float* negative_data = NULL; if (has_unconditioned) { // uncond if (control_hint != NULL) { control_net->compute(n_threads, noised_input, control_hint, timesteps, uncond.c_crossattn, uncond.c_vector); controls = control_net->controls; } diffusion_model->compute(n_threads, noised_input, timesteps, uncond.c_crossattn, uncond.c_concat, uncond.c_vector, guidance_tensor, -1, controls, control_strength, &out_uncond); negative_data = (float*)out_uncond->data; } int step_count = sigmas.size(); bool is_skiplayer_step = has_skiplayer && step > (int)(skip_layer_start * step_count) && step < (int)(skip_layer_end * step_count); float* skip_layer_data = NULL; if (is_skiplayer_step) { LOG_DEBUG("Skipping layers at step %d\n", step); // skip layer (same as conditionned) diffusion_model->compute(n_threads, noised_input, timesteps, cond.c_crossattn, cond.c_concat, cond.c_vector, guidance_tensor, -1, controls, control_strength, &out_skip, NULL, skip_layers); skip_layer_data = (float*)out_skip->data; } float* vec_denoised = (float*)denoised->data; float* vec_input = (float*)input->data; float* positive_data = (float*)out_cond->data; int ne_elements = (int)ggml_nelements(denoised); for (int i = 0; i < ne_elements; i++) { float latent_result = positive_data[i]; if (has_unconditioned) { // out_uncond + cfg_scale * (out_cond - out_uncond) int64_t ne3 = out_cond->ne[3]; if (min_cfg != cfg_scale && ne3 != 1) { int64_t i3 = i / out_cond->ne[0] * out_cond->ne[1] * out_cond->ne[2]; float scale = min_cfg + (cfg_scale - min_cfg) * (i3 * 1.0f / ne3); } else { latent_result = negative_data[i] + cfg_scale * (positive_data[i] - negative_data[i]); } } if (is_skiplayer_step) { latent_result = latent_result + (positive_data[i] - skip_layer_data[i]) * slg_scale; } // v = latent_result, eps = latent_result // denoised = (v * c_out + input * c_skip) or (input + eps * c_out) vec_denoised[i] = latent_result * c_out + vec_input[i] * c_skip; } int64_t t1 = ggml_time_us(); if (step > 0) { pretty_progress(step, (int)steps, (t1 - t0) / 1000000.f); // LOG_INFO("step %d sampling completed taking %.2fs", step, (t1 - t0) * 1.0f / 1000000); } return denoised; }; sample_k_diffusion(method, denoise, work_ctx, x, sigmas, rng); x = denoiser->inverse_noise_scaling(sigmas[sigmas.size() - 1], x); if (control_net) { control_net->free_control_ctx(); control_net->free_compute_buffer(); } diffusion_model->free_compute_buffer(); return x; } // ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding ggml_tensor* get_first_stage_encoding(ggml_context* work_ctx, ggml_tensor* moments) { // ldm.modules.distributions.distributions.DiagonalGaussianDistribution.sample ggml_tensor* latent = ggml_new_tensor_4d(work_ctx, moments->type, moments->ne[0], moments->ne[1], moments->ne[2] / 2, moments->ne[3]); struct ggml_tensor* noise = ggml_dup_tensor(work_ctx, latent); ggml_tensor_set_f32_randn(noise, rng); // noise = load_tensor_from_file(work_ctx, "noise.bin"); { float mean = 0; float logvar = 0; float value = 0; float std_ = 0; for (int i = 0; i < latent->ne[3]; i++) { for (int j = 0; j < latent->ne[2]; j++) { for (int k = 0; k < latent->ne[1]; k++) { for (int l = 0; l < latent->ne[0]; l++) { mean = ggml_tensor_get_f32(moments, l, k, j, i); logvar = ggml_tensor_get_f32(moments, l, k, j + (int)latent->ne[2], i); logvar = std::max(-30.0f, std::min(logvar, 20.0f)); std_ = std::exp(0.5f * logvar); value = mean + std_ * ggml_tensor_get_f32(noise, l, k, j, i); value = value * scale_factor; // printf("%d %d %d %d -> %f\n", i, j, k, l, value); ggml_tensor_set_f32(latent, value, l, k, j, i); } } } } } return latent; } ggml_tensor* compute_first_stage(ggml_context* work_ctx, ggml_tensor* x, bool decode) { int64_t W = x->ne[0]; int64_t H = x->ne[1]; int64_t C = 8; if (use_tiny_autoencoder) { C = 4; } else { if (sd_version_is_sd3(version)) { C = 32; } else if (sd_version_is_flux(version)) { C = 32; } } ggml_tensor* result = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, decode ? (W * 8) : (W / 8), // width decode ? (H * 8) : (H / 8), // height decode ? 3 : C, x->ne[3]); // channels int64_t t0 = ggml_time_ms(); if (!use_tiny_autoencoder) { if (decode) { ggml_tensor_scale(x, 1.0f / scale_factor); } else { ggml_tensor_scale_input(x); } if (vae_tiling && decode) { // TODO: support tiling vae encode // split latent in 32x32 tiles and compute in several steps auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { first_stage_model->compute(n_threads, in, decode, &out); }; sd_tiling(x, result, 8, 32, 0.5f, on_tiling); } else { first_stage_model->compute(n_threads, x, decode, &result); } first_stage_model->free_compute_buffer(); if (decode) { ggml_tensor_scale_output(result); } } else { //koboldcpp never use tiling with taesd if (false && vae_tiling && decode) { // TODO: support tiling vae encode // split latent in 64x64 tiles and compute in several steps auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) { tae_first_stage->compute(n_threads, in, decode, &out); }; sd_tiling(x, result, 8, 64, 0.5f, on_tiling); } else { tae_first_stage->compute(n_threads, x, decode, &result); } tae_first_stage->free_compute_buffer(); } int64_t t1 = ggml_time_ms(); LOG_DEBUG("computing vae [mode: %s] graph completed, taking %.2fs", decode ? "DECODE" : "ENCODE", (t1 - t0) * 1.0f / 1000); if (decode) { ggml_tensor_clamp(result, 0.0f, 1.0f); } return result; } ggml_tensor* encode_first_stage(ggml_context* work_ctx, ggml_tensor* x) { return compute_first_stage(work_ctx, x, false); } ggml_tensor* decode_first_stage(ggml_context* work_ctx, ggml_tensor* x) { return compute_first_stage(work_ctx, x, true); } }; /*================================================= SD API ==================================================*/ struct sd_ctx_t { StableDiffusionGGML* sd = NULL; }; void set_sd_vae_tiling(sd_ctx_t* ctx, bool tiling) { ctx->sd->vae_tiling = tiling; } int get_loaded_sd_version(sd_ctx_t* ctx) { return ctx->sd->version; } sd_ctx_t* new_sd_ctx(const char* model_path_c_str, const char* clip_l_path_c_str, const char* clip_g_path_c_str, const char* t5xxl_path_c_str, const char* diffusion_model_path_c_str, const char* vae_path_c_str, const char* taesd_path_c_str, const char* control_net_path_c_str, const char* lora_model_dir_c_str, const char* embed_dir_c_str, const char* id_embed_dir_c_str, bool vae_decode_only, bool vae_tiling, bool free_params_immediately, int n_threads, enum sd_type_t wtype, enum rng_type_t rng_type, enum schedule_t s, bool keep_clip_on_cpu, bool keep_control_net_cpu, bool keep_vae_on_cpu, bool diffusion_flash_attn) { sd_ctx_t* sd_ctx = (sd_ctx_t*)malloc(sizeof(sd_ctx_t)); if (sd_ctx == NULL) { return NULL; } std::string model_path(model_path_c_str); std::string clip_l_path(clip_l_path_c_str); std::string clip_g_path(clip_g_path_c_str); std::string t5xxl_path(t5xxl_path_c_str); std::string diffusion_model_path(diffusion_model_path_c_str); std::string vae_path(vae_path_c_str); std::string taesd_path(taesd_path_c_str); std::string control_net_path(control_net_path_c_str); std::string embd_path(embed_dir_c_str); std::string id_embd_path(id_embed_dir_c_str); std::string lora_model_dir(lora_model_dir_c_str); sd_ctx->sd = new StableDiffusionGGML(n_threads, vae_decode_only, free_params_immediately, lora_model_dir, rng_type); if (sd_ctx->sd == NULL) { return NULL; } if (!sd_ctx->sd->load_from_file(model_path, clip_l_path, clip_g_path, t5xxl_path_c_str, diffusion_model_path, vae_path, control_net_path, embd_path, id_embd_path, taesd_path, vae_tiling, (ggml_type)wtype, s, keep_clip_on_cpu, keep_control_net_cpu, keep_vae_on_cpu, diffusion_flash_attn)) { delete sd_ctx->sd; sd_ctx->sd = NULL; free(sd_ctx); return NULL; } return sd_ctx; } void free_sd_ctx(sd_ctx_t* sd_ctx) { if (sd_ctx->sd != NULL) { delete sd_ctx->sd; sd_ctx->sd = NULL; } free(sd_ctx); } sd_image_t* generate_image(sd_ctx_t* sd_ctx, struct ggml_context* work_ctx, ggml_tensor* init_latent, std::string prompt, std::string negative_prompt, int clip_skip, float cfg_scale, float guidance, int width, int height, enum sample_method_t sample_method, const std::vector& sigmas, int64_t seed, int batch_count, const sd_image_t* control_cond, float control_strength, float style_ratio, bool normalize_input, std::string input_id_images_path, std::vector skip_layers = {}, float slg_scale = 0, float skip_layer_start = 0.01, float skip_layer_end = 0.2) { if (seed < 0) { // Generally, when using the provided command line, the seed is always >0. // However, to prevent potential issues if 'stable-diffusion.cpp' is invoked as a library // by a third party with a seed <0, let's incorporate randomization here. srand((int)time(NULL)); seed = rand(); } // for (auto v : sigmas) { // std::cout << v << " "; // } // std::cout << std::endl; int sample_steps = sigmas.size() - 1; // Apply lora auto result_pair = extract_and_remove_lora(prompt); std::unordered_map lora_f2m = result_pair.first; // lora_name -> multiplier for (auto& kv : lora_f2m) { LOG_DEBUG("lora %s:%.2f", kv.first.c_str(), kv.second); } prompt = result_pair.second; LOG_DEBUG("prompt after extract and remove lora: \"%s\"", prompt.c_str()); int64_t t0 = ggml_time_ms(); // sd_ctx->sd->apply_loras(lora_f2m); //only use hardcoded lora for kcpp if(pending_apply_lora_fname!="" && pending_apply_lora_power>0) { printf("\nApplying LoRA now...\n"); sd_ctx->sd->apply_lora_from_file(pending_apply_lora_fname,pending_apply_lora_power); pending_apply_lora_fname = ""; } int64_t t1 = ggml_time_ms(); LOG_INFO("apply_loras completed, taking %.2fs", (t1 - t0) * 1.0f / 1000); // Photo Maker std::string prompt_text_only; ggml_tensor* init_img = NULL; SDCondition id_cond; std::vector class_tokens_mask; if (sd_ctx->sd->stacked_id) { if (!sd_ctx->sd->pmid_lora->applied) { t0 = ggml_time_ms(); sd_ctx->sd->pmid_lora->apply(sd_ctx->sd->tensors, sd_ctx->sd->n_threads); t1 = ggml_time_ms(); sd_ctx->sd->pmid_lora->applied = true; LOG_INFO("pmid_lora apply completed, taking %.2fs", (t1 - t0) * 1.0f / 1000); if (sd_ctx->sd->free_params_immediately) { sd_ctx->sd->pmid_lora->free_params_buffer(); } } // preprocess input id images std::vector input_id_images; bool pmv2 = sd_ctx->sd->pmid_model->get_version() == PM_VERSION_2; if (sd_ctx->sd->pmid_model && input_id_images_path.size() > 0) { std::vector img_files = get_files_from_dir(input_id_images_path); for (std::string img_file : img_files) { int c = 0; int width, height; if (ends_with(img_file, "safetensors")) { continue; } uint8_t* input_image_buffer = stbi_load(img_file.c_str(), &width, &height, &c, 3); if (input_image_buffer == NULL) { LOG_ERROR("PhotoMaker load image from '%s' failed", img_file.c_str()); continue; } else { LOG_INFO("PhotoMaker loaded image from '%s'", img_file.c_str()); } sd_image_t* input_image = NULL; input_image = new sd_image_t{(uint32_t)width, (uint32_t)height, 3, input_image_buffer}; input_image = preprocess_id_image(input_image); if (input_image == NULL) { LOG_ERROR("preprocess input id image from '%s' failed", img_file.c_str()); continue; } input_id_images.push_back(input_image); } } if (input_id_images.size() > 0) { sd_ctx->sd->pmid_model->style_strength = style_ratio; int32_t w = input_id_images[0]->width; int32_t h = input_id_images[0]->height; int32_t channels = input_id_images[0]->channel; int32_t num_input_images = (int32_t)input_id_images.size(); init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, w, h, channels, num_input_images); // TODO: move these to somewhere else and be user settable float mean[] = {0.48145466f, 0.4578275f, 0.40821073f}; float std[] = {0.26862954f, 0.26130258f, 0.27577711f}; for (int i = 0; i < num_input_images; i++) { sd_image_t* init_image = input_id_images[i]; if (normalize_input) sd_mul_images_to_tensor(init_image->data, init_img, i, mean, std); else sd_mul_images_to_tensor(init_image->data, init_img, i, NULL, NULL); } t0 = ggml_time_ms(); auto cond_tup = sd_ctx->sd->cond_stage_model->get_learned_condition_with_trigger(work_ctx, sd_ctx->sd->n_threads, prompt, clip_skip, width, height, num_input_images, sd_ctx->sd->diffusion_model->get_adm_in_channels()); id_cond = std::get<0>(cond_tup); class_tokens_mask = std::get<1>(cond_tup); // struct ggml_tensor* id_embeds = NULL; if (pmv2) { // id_embeds = sd_ctx->sd->pmid_id_embeds->get(); id_embeds = load_tensor_from_file(work_ctx, path_join(input_id_images_path, "id_embeds.bin")); // print_ggml_tensor(id_embeds, true, "id_embeds:"); } id_cond.c_crossattn = sd_ctx->sd->id_encoder(work_ctx, init_img, id_cond.c_crossattn, id_embeds, class_tokens_mask); t1 = ggml_time_ms(); LOG_INFO("Photomaker ID Stacking, taking %" PRId64 " ms", t1 - t0); if (sd_ctx->sd->free_params_immediately) { sd_ctx->sd->pmid_model->free_params_buffer(); } // Encode input prompt without the trigger word for delayed conditioning prompt_text_only = sd_ctx->sd->cond_stage_model->remove_trigger_from_prompt(work_ctx, prompt); // printf("%s || %s \n", prompt.c_str(), prompt_text_only.c_str()); prompt = prompt_text_only; // // if (sample_steps < 50) { // LOG_INFO("sampling steps increases from %d to 50 for PHOTOMAKER", sample_steps); // sample_steps = 50; // } } else { LOG_WARN("Provided PhotoMaker model file, but NO input ID images"); LOG_WARN("Turn off PhotoMaker"); sd_ctx->sd->stacked_id = false; } for (sd_image_t* img : input_id_images) { free(img->data); } input_id_images.clear(); } // Get learned condition t0 = ggml_time_ms(); SDCondition cond = sd_ctx->sd->cond_stage_model->get_learned_condition(work_ctx, sd_ctx->sd->n_threads, prompt, clip_skip, width, height, sd_ctx->sd->diffusion_model->get_adm_in_channels()); SDCondition uncond; if (cfg_scale != 1.0) { bool force_zero_embeddings = false; if (sd_ctx->sd->version == VERSION_SDXL && negative_prompt.size() == 0) { force_zero_embeddings = true; } uncond = sd_ctx->sd->cond_stage_model->get_learned_condition(work_ctx, sd_ctx->sd->n_threads, negative_prompt, clip_skip, width, height, sd_ctx->sd->diffusion_model->get_adm_in_channels(), force_zero_embeddings); } t1 = ggml_time_ms(); LOG_INFO("get_learned_condition completed, taking %d ms", t1 - t0); if (sd_ctx->sd->free_params_immediately) { sd_ctx->sd->cond_stage_model->free_params_buffer(); } // Control net hint struct ggml_tensor* image_hint = NULL; if (control_cond != NULL) { image_hint = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); sd_image_to_tensor(control_cond->data, image_hint); } // Sample std::vector final_latents; // collect latents to decode int C = 4; if (sd_version_is_sd3(sd_ctx->sd->version)) { C = 16; } else if (sd_version_is_flux(sd_ctx->sd->version)) { C = 16; } int W = width / 8; int H = height / 8; LOG_INFO("sampling using %s method", sampling_methods_str[sample_method]); for (int b = 0; b < batch_count; b++) { int64_t sampling_start = ggml_time_ms(); int64_t cur_seed = seed + b; LOG_INFO("generating image: %i/%i - seed %" PRId64, b + 1, batch_count, cur_seed); sd_ctx->sd->rng->manual_seed(cur_seed); struct ggml_tensor* x_t = init_latent; struct ggml_tensor* noise = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, 1); ggml_tensor_set_f32_randn(noise, sd_ctx->sd->rng); int start_merge_step = -1; if (sd_ctx->sd->stacked_id) { start_merge_step = int(sd_ctx->sd->pmid_model->style_strength / 100.f * sample_steps); // if (start_merge_step > 30) // start_merge_step = 30; LOG_INFO("PHOTOMAKER: start_merge_step: %d", start_merge_step); } struct ggml_tensor* x_0 = sd_ctx->sd->sample(work_ctx, x_t, noise, cond, uncond, image_hint, control_strength, cfg_scale, cfg_scale, guidance, sample_method, sigmas, start_merge_step, id_cond, skip_layers, slg_scale, skip_layer_start, skip_layer_end); // struct ggml_tensor* x_0 = load_tensor_from_file(ctx, "samples_ddim.bin"); // print_ggml_tensor(x_0); int64_t sampling_end = ggml_time_ms(); LOG_INFO("sampling completed, taking %.2fs", (sampling_end - sampling_start) * 1.0f / 1000); final_latents.push_back(x_0); } if (sd_ctx->sd->free_params_immediately) { sd_ctx->sd->diffusion_model->free_params_buffer(); } int64_t t3 = ggml_time_ms(); LOG_INFO("generating %d latent images completed, taking %.2fs", final_latents.size(), (t3 - t1) * 1.0f / 1000); // Decode to image LOG_INFO("decoding %zu latents", final_latents.size()); std::vector decoded_images; // collect decoded images for (size_t i = 0; i < final_latents.size(); i++) { t1 = ggml_time_ms(); struct ggml_tensor* img = sd_ctx->sd->decode_first_stage(work_ctx, final_latents[i] /* x_0 */); // print_ggml_tensor(img); if (img != NULL) { decoded_images.push_back(img); } int64_t t2 = ggml_time_ms(); LOG_INFO("latent %d decoded, taking %.2fs", i + 1, (t2 - t1) * 1.0f / 1000); } int64_t t4 = ggml_time_ms(); LOG_INFO("decode_first_stage completed, taking %.2fs", (t4 - t3) * 1.0f / 1000); if (sd_ctx->sd->free_params_immediately && !sd_ctx->sd->use_tiny_autoencoder) { sd_ctx->sd->first_stage_model->free_params_buffer(); } sd_image_t* result_images = (sd_image_t*)calloc(batch_count, sizeof(sd_image_t)); if (result_images == NULL) { ggml_free(work_ctx); return NULL; } for (size_t i = 0; i < decoded_images.size(); i++) { result_images[i].width = width; result_images[i].height = height; result_images[i].channel = 3; result_images[i].data = sd_tensor_to_image(decoded_images[i]); } ggml_free(work_ctx); return result_images; } sd_image_t* txt2img(sd_ctx_t* sd_ctx, const char* prompt_c_str, const char* negative_prompt_c_str, int clip_skip, float cfg_scale, float guidance, int width, int height, enum sample_method_t sample_method, int sample_steps, int64_t seed, int batch_count, const sd_image_t* control_cond, float control_strength, float style_ratio, bool normalize_input, const char* input_id_images_path_c_str, int* skip_layers = NULL, size_t skip_layers_count = 0, float slg_scale = 0, float skip_layer_start = 0.01, float skip_layer_end = 0.2) { std::vector skip_layers_vec(skip_layers, skip_layers + skip_layers_count); LOG_DEBUG("txt2img %dx%d", width, height); if (sd_ctx == NULL) { return NULL; } struct ggml_init_params params; params.mem_size = static_cast(10 * 1024 * 1024); // 10 MB if (sd_version_is_sd3(sd_ctx->sd->version)) { params.mem_size *= 3; } if (sd_version_is_flux(sd_ctx->sd->version)) { params.mem_size *= 4; } if (sd_ctx->sd->stacked_id) { params.mem_size += static_cast(10 * 1024 * 1024); // 10 MB } params.mem_size += width * height * 3 * sizeof(float); params.mem_size *= batch_count; params.mem_buffer = NULL; params.no_alloc = false; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* work_ctx = ggml_init(params); if (!work_ctx) { LOG_ERROR("ggml_init() failed"); return NULL; } size_t t0 = ggml_time_ms(); std::vector sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps); int C = 4; if (sd_version_is_sd3(sd_ctx->sd->version)) { C = 16; } else if (sd_version_is_flux(sd_ctx->sd->version)) { C = 16; } int W = width / 8; int H = height / 8; ggml_tensor* init_latent = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, 1); if (sd_version_is_sd3(sd_ctx->sd->version)) { ggml_set_f32(init_latent, 0.0609f); } else if (sd_version_is_flux(sd_ctx->sd->version)) { ggml_set_f32(init_latent, 0.1159f); } else { ggml_set_f32(init_latent, 0.f); } sd_image_t* result_images = generate_image(sd_ctx, work_ctx, init_latent, prompt_c_str, negative_prompt_c_str, clip_skip, cfg_scale, guidance, width, height, sample_method, sigmas, seed, batch_count, control_cond, control_strength, style_ratio, normalize_input, input_id_images_path_c_str, skip_layers_vec, slg_scale, skip_layer_start, skip_layer_end); size_t t1 = ggml_time_ms(); LOG_INFO("txt2img completed in %.2fs", (t1 - t0) * 1.0f / 1000); return result_images; } sd_image_t* img2img(sd_ctx_t* sd_ctx, sd_image_t init_image, const char* prompt_c_str, const char* negative_prompt_c_str, int clip_skip, float cfg_scale, float guidance, int width, int height, sample_method_t sample_method, int sample_steps, float strength, int64_t seed, int batch_count, const sd_image_t* control_cond, float control_strength, float style_ratio, bool normalize_input, const char* input_id_images_path_c_str, int* skip_layers = NULL, size_t skip_layers_count = 0, float slg_scale = 0, float skip_layer_start = 0.01, float skip_layer_end = 0.2) { std::vector skip_layers_vec(skip_layers, skip_layers + skip_layers_count); LOG_DEBUG("img2img %dx%d", width, height); if (sd_ctx == NULL) { return NULL; } struct ggml_init_params params; params.mem_size = static_cast(10 * 1024 * 1024); // 10 MB if (sd_version_is_sd3(sd_ctx->sd->version)) { params.mem_size *= 2; } if (sd_version_is_flux(sd_ctx->sd->version)) { params.mem_size *= 3; } if (sd_ctx->sd->stacked_id) { params.mem_size += static_cast(10 * 1024 * 1024); // 10 MB } params.mem_size += width * height * 3 * sizeof(float) * 2; params.mem_size *= batch_count; params.mem_buffer = NULL; params.no_alloc = false; // LOG_DEBUG("mem_size %u ", params.mem_size); struct ggml_context* work_ctx = ggml_init(params); if (!work_ctx) { LOG_ERROR("ggml_init() failed"); return NULL; } size_t t0 = ggml_time_ms(); if (seed < 0) { srand((int)time(NULL)); seed = rand(); } sd_ctx->sd->rng->manual_seed(seed); ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1); sd_image_to_tensor(init_image.data, init_img); ggml_tensor* init_latent = NULL; if (!sd_ctx->sd->use_tiny_autoencoder) { ggml_tensor* moments = sd_ctx->sd->encode_first_stage(work_ctx, init_img); init_latent = sd_ctx->sd->get_first_stage_encoding(work_ctx, moments); } else { init_latent = sd_ctx->sd->encode_first_stage(work_ctx, init_img); } // print_ggml_tensor(init_latent, true); size_t t1 = ggml_time_ms(); LOG_INFO("encode_first_stage completed, taking %.2fs", (t1 - t0) * 1.0f / 1000); std::vector sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps); size_t t_enc = static_cast(sample_steps * strength); LOG_INFO("target t_enc is %zu steps", t_enc); std::vector sigma_sched; sigma_sched.assign(sigmas.begin() + sample_steps - t_enc - 1, sigmas.end()); sd_image_t* result_images = generate_image(sd_ctx, work_ctx, init_latent, prompt_c_str, negative_prompt_c_str, clip_skip, cfg_scale, guidance, width, height, sample_method, sigma_sched, seed, batch_count, control_cond, control_strength, style_ratio, normalize_input, input_id_images_path_c_str, skip_layers_vec, slg_scale, skip_layer_start, skip_layer_end); size_t t2 = ggml_time_ms(); LOG_INFO("img2img completed in %.2fs", (t1 - t0) * 1.0f / 1000); return result_images; } SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx, sd_image_t init_image, int width, int height, int video_frames, int motion_bucket_id, int fps, float augmentation_level, float min_cfg, float cfg_scale, enum sample_method_t sample_method, int sample_steps, float strength, int64_t seed) { if (sd_ctx == NULL) { return NULL; } LOG_INFO("img2vid %dx%d", width, height); std::vector sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps); struct ggml_init_params params; params.mem_size = static_cast(10 * 1024) * 1024; // 10 MB params.mem_size += width * height * 3 * sizeof(float) * video_frames; params.mem_buffer = NULL; params.no_alloc = false; // LOG_DEBUG("mem_size %u ", params.mem_size); // draft context struct ggml_context* work_ctx = ggml_init(params); if (!work_ctx) { LOG_ERROR("ggml_init() failed"); return NULL; } if (seed < 0) { seed = (int)time(NULL); } sd_ctx->sd->rng->manual_seed(seed); int64_t t0 = ggml_time_ms(); SDCondition cond = sd_ctx->sd->get_svd_condition(work_ctx, init_image, width, height, fps, motion_bucket_id, augmentation_level); auto uc_crossattn = ggml_dup_tensor(work_ctx, cond.c_crossattn); ggml_set_f32(uc_crossattn, 0.f); auto uc_concat = ggml_dup_tensor(work_ctx, cond.c_concat); ggml_set_f32(uc_concat, 0.f); auto uc_vector = ggml_dup_tensor(work_ctx, cond.c_vector); SDCondition uncond = SDCondition(uc_crossattn, uc_vector, uc_concat); int64_t t1 = ggml_time_ms(); LOG_INFO("get_learned_condition completed, taking %d ms", t1 - t0); if (sd_ctx->sd->free_params_immediately) { sd_ctx->sd->clip_vision->free_params_buffer(); } sd_ctx->sd->rng->manual_seed(seed); int C = 4; int W = width / 8; int H = height / 8; struct ggml_tensor* x_t = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, video_frames); ggml_set_f32(x_t, 0.f); struct ggml_tensor* noise = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, W, H, C, video_frames); ggml_tensor_set_f32_randn(noise, sd_ctx->sd->rng); LOG_INFO("sampling using %s method", sampling_methods_str[sample_method]); struct ggml_tensor* x_0 = sd_ctx->sd->sample(work_ctx, x_t, noise, cond, uncond, {}, 0.f, min_cfg, cfg_scale, 0.f, sample_method, sigmas, -1, SDCondition(NULL, NULL, NULL)); int64_t t2 = ggml_time_ms(); LOG_INFO("sampling completed, taking %.2fs", (t2 - t1) * 1.0f / 1000); if (sd_ctx->sd->free_params_immediately) { sd_ctx->sd->diffusion_model->free_params_buffer(); } struct ggml_tensor* img = sd_ctx->sd->decode_first_stage(work_ctx, x_0); if (sd_ctx->sd->free_params_immediately) { sd_ctx->sd->first_stage_model->free_params_buffer(); } if (img == NULL) { ggml_free(work_ctx); return NULL; } sd_image_t* result_images = (sd_image_t*)calloc(video_frames, sizeof(sd_image_t)); if (result_images == NULL) { ggml_free(work_ctx); return NULL; } for (size_t i = 0; i < video_frames; i++) { auto img_i = ggml_view_3d(work_ctx, img, img->ne[0], img->ne[1], img->ne[2], img->nb[1], img->nb[2], img->nb[3] * i); result_images[i].width = width; result_images[i].height = height; result_images[i].channel = 3; result_images[i].data = sd_tensor_to_image(img_i); } ggml_free(work_ctx); int64_t t3 = ggml_time_ms(); LOG_INFO("img2vid completed in %.2fs", (t3 - t0) * 1.0f / 1000); return result_images; }