Text Generation
Transformers
PyTorch
English
mistral
text-generation-inference
File size: 2,071 Bytes
7ab0b56
bab8c10
 
 
 
7ab0b56
8540165
 
7ab0b56
 
bab8c10
7ab0b56
bab8c10
7ab0b56
bab8c10
7ab0b56
bab8c10
7ab0b56
bab8c10
7ab0b56
bab8c10
7ab0b56
bab8c10
 
 
7ab0b56
bab8c10
7ab0b56
bab8c10
 
 
7ab0b56
bab8c10
7ab0b56
bab8c10
7ab0b56
bab8c10
 
 
7ab0b56
bab8c10
7ab0b56
bab8c10
7ab0b56
bab8c10
7ab0b56
bab8c10
 
 
 
 
 
 
8540165
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
datasets:
- togethercomputer/RedPajama-Data-1T
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
---

## PDS-1B

[paper](https://arxiv.org/abs/2410.07064) | [code](https://github.com/microsoft/LMOps/tree/main/data_selection)

**PDS-1B** is a 1B model with [Mistral](https://arxiv.org/abs/2310.06825) achitecture pre-trained from scratch on the data selected from the CC split of [Redpajama](https://github.com/togethercomputer/RedPajama-Data), using the PDS framework.

The PDS framework is based on the [Pontryagin's maximum principle](https://en.wikipedia.org/wiki/Pontryagin%27s_maximum_principle#:~:text=Pontryagin's%20maximum%20principle%20is%20used,the%20state%20or%20input%20controls.) for optimal pre-training data selection, which not only enjoy strong theoretical support but is also scalable for training large language models. 

Please refer to our [paper](https://arxiv.org/abs/2410.07064) for more details.

### Overview of the theory:

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/Hdw83Vsb305GRlsqB7c34.png" width="700">
</p>

### Overview of the PDS framework:

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/YPwluLyZGK7DACH1WqDUN.png" width="700">
</p>

### Evaluation

PDS-selected data improves the performance of language models pre-trained from scratch and saves pre-training comptation. The improvement scales up to large model sizes.

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/6undIr37d10qD73TDiPDK.png" width="600">
</p>

### Baseline

[Conventional Pre-training](https://huggingface.co/Data-Selection/BSL-1B)

### Citation

```bibtex
@article{gu2024data,
  title={Data Selection via Optimal Control for Language Models},
  author={Gu, Yuxian and Dong, Li and Wang, Hongning and Hao, Yaru and Dong, Qingxiu and Wei, Furu and Huang, Minlie},
  journal={arXiv preprint arXiv:2410.07064},
  year={2024}
}
```