--- library_name: transformers model_name: Phi-4-Argunaut-1-SPIN pipeline_tag: text-generation base_model: DebateLabKIT/Phi-4-Argunaut-1-SFT datasets: - DebateLabKIT/argdown_line-by-line - DebateLabKIT/argument_mapping_dpo_pairs - allenai/llama-3.1-tulu-3-70b-preference-mixture tags: - logic - argumentation - critical-thinking - argument-mapping - generated_from_trainer - trl - dpo - spin licence: mit --- # Model Card for Phi-4-Argunaut-1-SPIN This model is a fine-tuned version of [DebateLabKIT/Phi-4-Argunaut-1-SFT](https://huggingface.co/DebateLabKIT/Phi-4-Argunaut-1-SFT). It has been trained using [TRL](https://github.com/huggingface/trl) and [vLLM](https://docs.vllm.ai/). Checkpoints are tagged. 📘 [HF Blog Article](https://huggingface.co/blog/ggbetz/argunauts-phase-2) ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="DebateLabKIT/Llama-3.1-Argunaut-1-8B-SPIN", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with Self-Play Fine-Tuning (SPIN), a method introduced in [Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models](https://huggingface.co/papers/2401.01335). More details about the training procedure can be found in the [blog post](https://huggingface.co/blog/ggbetz/argunauts-phase-2). ### Framework versions - TRL: 0.14.0 - Transformers: 4.46.3 - Pytorch: 2.4.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Evaluation ### Chat Experience _coming soon..._ ### Metrics _coming soon..._ ## Citations Cite SPIN as: ```bibtex @misc{chen2024selfplayfinetuningconvertsweak, title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models}, author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu}, year={2024}, eprint={2401.01335}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2401.01335}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```