DeepMostInnovations commited on
Commit
36fa6dc
·
verified ·
1 Parent(s): 36c8f46

Delete generate_dataset.py

Browse files
Files changed (1) hide show
  1. generate_dataset.py +0 -1603
generate_dataset.py DELETED
@@ -1,1603 +0,0 @@
1
- import os
2
- import json
3
- import pandas as pd
4
- import numpy as np
5
- from typing import List, Dict, Tuple, Optional, Any
6
- import logging
7
- import random
8
- import time
9
- from tqdm import tqdm
10
- from openai import AzureOpenAI
11
- from datetime import datetime
12
- import concurrent.futures
13
- import threading
14
- from dataclasses import dataclass
15
- import queue
16
- import math
17
- import re
18
-
19
- # Configure logging
20
- logging.basicConfig(
21
- level=logging.INFO,
22
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
23
- handlers=[
24
- logging.FileHandler("sales_ai_system.log"),
25
- logging.StreamHandler()
26
- ]
27
- )
28
-
29
- logger = logging.getLogger(__name__)
30
-
31
- # Hard-coded Azure OpenAI credentials
32
- AZURE_OPENAI_API_KEY =""
33
- AZURE_OPENAI_DEPLOYMENT_NAME = ""
34
- AZURE_OPENAI_ENDPOINT = "https://resource_name.openai.azure.com/"
35
- AZURE_EMBEDDING_DEPLOYMENT_NAME = "text-embedding-3-large"
36
-
37
- # Rate limiting parameters
38
- RATE_LIMIT_RPM = 2500 # Requests per minute limit
39
- # Use only 60% of the limit to account for retry overhead and be conservative
40
- SAFE_RATE_LIMIT_RPM = int(RATE_LIMIT_RPM * 0.6)
41
- RATE_LIMIT_RPS = SAFE_RATE_LIMIT_RPM / 60 # Requests per second
42
- MIN_REQUEST_INTERVAL = 1.0 / RATE_LIMIT_RPS # Minimum interval between requests
43
-
44
- # Thread-local storage for clients
45
- local = threading.local()
46
-
47
- # More granular rate limiters for different endpoints
48
- class FixedWindowRateLimiter:
49
- """
50
- Fixed window rate limiter that tracks requests in a sliding window.
51
- More conservative than token bucket for API rate limits.
52
- """
53
- def __init__(self, max_requests, window_size=60):
54
- self.max_requests = max_requests
55
- self.window_size = window_size # in seconds
56
- self.request_timestamps = []
57
- self.lock = threading.Lock()
58
-
59
- def wait_if_needed(self):
60
- """Wait if the rate limit would be exceeded."""
61
- with self.lock:
62
- now = time.time()
63
-
64
- # Remove timestamps outside the window
65
- self.request_timestamps = [ts for ts in self.request_timestamps
66
- if now - ts < self.window_size]
67
-
68
- # Check if we're at the limit
69
- if len(self.request_timestamps) >= self.max_requests:
70
- # Calculate wait time - oldest timestamp will be removed after window_size
71
- wait_time = self.window_size - (now - self.request_timestamps[0])
72
-
73
- # Add a small jitter to avoid all threads waking up at the same time
74
- wait_time = max(0.1, wait_time + random.uniform(0, 0.5))
75
-
76
- return wait_time
77
-
78
- # No need to wait
79
- self.request_timestamps.append(now)
80
- return 0
81
-
82
- def record_request(self):
83
- """Record a request without waiting."""
84
- with self.lock:
85
- now = time.time()
86
- self.request_timestamps.append(now)
87
-
88
- # Create rate limiters
89
- chat_limiter = FixedWindowRateLimiter(SAFE_RATE_LIMIT_RPM)
90
- embedding_limiter = FixedWindowRateLimiter(SAFE_RATE_LIMIT_RPM)
91
-
92
- @dataclass
93
- class SaaSProfile:
94
- """Profile of a SaaS product."""
95
- company_id: str
96
- company_name: str
97
- product_name: str
98
- product_description: str
99
- target_audience: List[str]
100
- key_features: List[str]
101
- value_propositions: List[str]
102
- pricing_structure: Dict[str, Any]
103
- common_objections: List[str]
104
- industry: str
105
- company_size: str # small, medium, large, enterprise
106
-
107
- class ResultWriter:
108
- """Thread-safe writer for results to CSV"""
109
-
110
- def __init__(self, output_path: str, columns: List[str]):
111
- self.output_path = output_path
112
- self.columns = columns
113
- self.lock = threading.Lock()
114
-
115
- # Create the file with headers if it doesn't exist
116
- if not os.path.exists(output_path):
117
- with open(output_path, 'w') as f:
118
- f.write(','.join(columns) + '\n')
119
-
120
- logger.info(f"Initialized ResultWriter for {output_path}")
121
-
122
- def write_rows(self, rows: List[Dict]):
123
- """Write rows directly to the CSV file"""
124
- if not rows:
125
- return
126
-
127
- try:
128
- with self.lock:
129
- with open(self.output_path, 'a') as f:
130
- for row in rows:
131
- # Convert values to strings and escape commas
132
- csv_values = []
133
- for col in self.columns:
134
- val = str(row.get(col, ""))
135
- # Escape double quotes by doubling them
136
- val = val.replace('"', '""')
137
- # Wrap in quotes
138
- csv_values.append(f'"{val}"')
139
- csv_line = ','.join(csv_values)
140
- f.write(csv_line + '\n')
141
-
142
- logger.debug(f"Wrote {len(rows)} rows to {self.output_path}")
143
- except Exception as e:
144
- logger.error(f"Error writing to CSV: {str(e)}")
145
-
146
- class EnhancedSaaSDatasetGenerator:
147
- """
148
- Generates diverse and realistic synthetic sales conversation datasets for SaaS companies
149
- using Azure OpenAI with multithreading support.
150
- """
151
-
152
- def __init__(self):
153
- """Initialize the dataset generator."""
154
- self.profile_lock = threading.Lock()
155
- self.profiles = None
156
- self.writer = None
157
- self.total_generated = 0
158
- self.total_counter_lock = threading.Lock()
159
-
160
- # Track API call statistics
161
- self.api_calls = 0
162
- self.api_call_lock = threading.Lock()
163
- self.retry_count = 0
164
- self.retry_lock = threading.Lock()
165
-
166
- # Track last retry timestamp to prevent thundering herd
167
- self.last_retry_time = 0
168
- self.last_retry_lock = threading.Lock()
169
-
170
- # Conversation style templates - define various styles to create diverse conversations
171
- self.conversation_styles = [
172
- "casual_friendly",
173
- "direct_professional",
174
- "technical_detailed",
175
- "consultative_advisory",
176
- "empathetic_supportive",
177
- "skeptical_challenging",
178
- "urgent_time_pressed",
179
- "confused_overwhelmed",
180
- "knowledgeable_assertive",
181
- "storytelling_narrative"
182
- ]
183
-
184
- # Communication channel templates with their unique characteristics
185
- self.communication_channels = {
186
- "email": {
187
- "formality": "high",
188
- "response_time": "delayed",
189
- "message_length": "medium to long",
190
- "format_elements": ["subject lines", "signatures", "quoted replies"]
191
- },
192
- "live_chat": {
193
- "formality": "low to medium",
194
- "response_time": "immediate",
195
- "message_length": "short to medium",
196
- "format_elements": ["quick responses", "emojis", "typing indicators"]
197
- },
198
- "phone_call": {
199
- "formality": "medium",
200
- "response_time": "immediate",
201
- "message_length": "conversational",
202
- "format_elements": ["verbal pauses", "interruptions", "voice tone indicators"]
203
- },
204
- "video_call": {
205
- "formality": "medium",
206
- "response_time": "immediate",
207
- "message_length": "medium",
208
- "format_elements": ["screen sharing references", "visual cues", "environment mentions"]
209
- },
210
- "in_person": {
211
- "formality": "varies",
212
- "response_time": "immediate",
213
- "message_length": "varies",
214
- "format_elements": ["environment references", "body language cues", "material handouts"]
215
- },
216
- "sms": {
217
- "formality": "low",
218
- "response_time": "varies",
219
- "message_length": "very short",
220
- "format_elements": ["abbreviations", "emojis", "brief statements"]
221
- },
222
- "social_media": {
223
- "formality": "low to medium",
224
- "response_time": "varies",
225
- "message_length": "short",
226
- "format_elements": ["hashtags", "mentions", "public/private context references"]
227
- }
228
- }
229
-
230
- # Customer personas templates with more diverse traits
231
- self.persona_templates = [
232
- {
233
- "name": "Time-Pressed Executive",
234
- "traits": ["direct", "value-focused", "impatient", "decisive"],
235
- "communication_style": "brief and to-the-point, may use truncated sentences and check messages between meetings",
236
- "typical_objections": ["too time-consuming", "prove ROI quickly", "competitor comparisons"]
237
- },
238
- {
239
- "name": "Technical Evaluator",
240
- "traits": ["detail-oriented", "skeptical", "analytical", "research-driven"],
241
- "communication_style": "asks specific technical questions, uses industry jargon, references research",
242
- "typical_objections": ["technical limitations", "integration concerns", "security issues"]
243
- },
244
- {
245
- "name": "Budget-Conscious Manager",
246
- "traits": ["price-sensitive", "cautious", "ROI-focused", "deliberate"],
247
- "communication_style": "frequently mentions costs, compares alternatives, asks about discounts",
248
- "typical_objections": ["too expensive", "budget constraints", "not worth the investment"]
249
- },
250
- {
251
- "name": "Relationship Builder",
252
- "traits": ["conversational", "personable", "story-driven", "trust-focused"],
253
- "communication_style": "shares personal anecdotes, asks about the sales rep, builds rapport before business",
254
- "typical_objections": ["need to build trust", "want references", "need team buy-in"]
255
- },
256
- {
257
- "name": "Innovation Seeker",
258
- "traits": ["trend-aware", "competitive", "growth-focused", "risk-tolerant"],
259
- "communication_style": "references industry trends, talks about growth goals, explores cutting-edge features",
260
- "typical_objections": ["not innovative enough", "will soon be outdated", "competitive advantage concerns"]
261
- },
262
- {
263
- "name": "Overwhelmed User",
264
- "traits": ["stressed", "confused", "seeking guidance", "time-constrained"],
265
- "communication_style": "asks many basic questions, may seem scattered, expresses feeling overwhelmed",
266
- "typical_objections": ["too complicated", "training requirements", "implementation time"]
267
- },
268
- {
269
- "name": "Delegated Researcher",
270
- "traits": ["information-gathering", "non-decision-maker", "thorough", "process-oriented"],
271
- "communication_style": "mentions reporting back to others, asks for materials, follows structured evaluation",
272
- "typical_objections": ["need to consult others", "gathering information only", "complex approval process"]
273
- },
274
- {
275
- "name": "Competitor User",
276
- "traits": ["comparative", "experienced", "specific needs", "solution-aware"],
277
- "communication_style": "frequently mentions current solution, asks about specific differences, uses competitor terminology",
278
- "typical_objections": ["switching costs", "feature parity", "disruption concerns"]
279
- },
280
- {
281
- "name": "Enthusiastic Champion",
282
- "traits": ["excited", "vision-aligned", "quick to connect", "internal seller"],
283
- "communication_style": "expresses excitement, talks about company vision, discusses internal advocacy",
284
- "typical_objections": ["need help convincing others", "implementation support", "proving value to team"]
285
- },
286
- {
287
- "name": "Resistant Stakeholder",
288
- "traits": ["change-averse", "skeptical", "security-focused", "process-oriented"],
289
- "communication_style": "questions necessity, raises potential problems, defensive about current solutions",
290
- "typical_objections": ["disruption to workflow", "employee resistance", "security concerns"]
291
- }
292
- ]
293
-
294
- # Conversation flow patterns to create non-linear, realistic conversations
295
- self.conversation_flows = [
296
- "standard_linear", # Traditional linear sales conversation
297
- "multiple_objection_loops", # Customer raises several objections that must be addressed
298
- "subject_switching", # Conversation jumps between different topics
299
- "interrupted_followup", # Conversation gets interrupted and resumes later
300
- "technical_deep_dive", # Detailed exploration of technical aspects
301
- "competitive_comparison", # Heavy focus on comparing with competitors
302
- "gradual_discovery", # Slow revelation of needs throughout conversation
303
- "immediate_interest", # Customer shows high interest from the beginning
304
- "initial_rejection", # Starts negative but potentially turns around
305
- "stakeholder_expansion", # Involves bringing in additional decision makers
306
- "pricing_negotiation", # Extended discussion about pricing and terms
307
- "implementation_concerns", # Focused on implementation challenges
308
- "value_justification", # Customer needs convincing on ROI
309
- "relationship_building", # Heavy on personal connection before business
310
- "multi_session", # Simulates a conversation occurring across multiple contacts
311
- "demo_walkthrough" # Simulates a product demonstration conversation
312
- ]
313
-
314
- # Speech patterns and quirks to make conversations more human-like
315
- self.speech_patterns = [
316
- # Hesitations and fillers
317
- {"pattern": "filler_words", "examples": ["um", "uh", "like", "you know", "actually", "basically", "I mean"]},
318
-
319
- # Grammatical quirks
320
- {"pattern": "run_on_sentences", "examples": ["and then we also", "plus we need to", "which also means"]},
321
- {"pattern": "self_corrections", "examples": ["I mean", "what I meant was", "actually, let me rephrase", "sorry, what I'm trying to say"]},
322
-
323
- # Typing variations (for written channels)
324
- {"pattern": "typos", "examples": ["teh", "adn", "waht", "thigns", "compnay", "prodcut", "featuers"]},
325
- {"pattern": "autocorrections", "examples": ["Our team is looking for skeletons (solutions)", "We need better coffin (conferencing)"]},
326
-
327
- # Regional expressions
328
- {"pattern": "regionalisms", "examples": ["y'all", "folks", "brilliant", "cheers", "no worries", "wicked", "proper"]},
329
-
330
- # Punctuation habits
331
- {"pattern": "over_punctuation", "examples": ["!!!", "???", "..."]},
332
- {"pattern": "under_punctuation", "examples": ["no periods", "run on thoughts", "missing question marks"]},
333
-
334
- # Message structure
335
- {"pattern": "fragmented_thoughts", "examples": ["Need to check on...", "Not sure if...", "Let me think...", "One more thing."]},
336
- {"pattern": "tangents", "examples": ["By the way", "Oh that reminds me", "Not related, but", "Random thought"]},
337
-
338
- # Emphasis patterns
339
- {"pattern": "emphasis_capital", "examples": ["REALLY", "VERY", "NEVER", "ALWAYS", "MUST"]},
340
- {"pattern": "emphasis_repetition", "examples": ["very very", "really really", "many many"]}
341
- ]
342
-
343
- # Customer needs categories with specific language patterns
344
- self.customer_needs = [
345
- {"type": "efficiency", "keywords": ["faster", "streamline", "automate", "time-consuming", "manual", "process", "workflow"]},
346
- {"type": "cost_reduction", "keywords": ["expenses", "budget", "save money", "affordable", "cost-effective", "ROI", "investment"]},
347
- {"type": "growth", "keywords": ["scale", "expand", "increase revenue", "market share", "competitive", "opportunity", "growth"]},
348
- {"type": "compliance", "keywords": ["regulations", "requirements", "standards", "audit", "legal", "compliance", "risk"]},
349
- {"type": "integration", "keywords": ["connect", "compatible", "ecosystem", "work with", "existing systems", "API", "integration"]},
350
- {"type": "usability", "keywords": ["easy to use", "intuitive", "learning curve", "training", "user-friendly", "simple", "interface"]},
351
- {"type": "reliability", "keywords": ["uptime", "stable", "dependable", "trust", "consistent", "failover", "backup"]},
352
- {"type": "security", "keywords": ["protect", "data security", "encryption", "sensitive information", "breach", "privacy", "secure"]},
353
- {"type": "support", "keywords": ["help", "customer service", "response time", "training", "documentation", "support team", "assistance"]},
354
- {"type": "analytics", "keywords": ["insights", "reporting", "dashboard", "metrics", "data", "visibility", "analytics"]}
355
- ]
356
-
357
- logger.info("Initialized EnhancedSaaSDatasetGenerator with diverse conversation templates")
358
-
359
- def get_openai_client(self):
360
- """Get thread-local Azure OpenAI client"""
361
- if not hasattr(local, 'client'):
362
- local.client = AzureOpenAI(
363
- api_key=AZURE_OPENAI_API_KEY,
364
- api_version="2023-05-15",
365
- azure_endpoint=AZURE_OPENAI_ENDPOINT
366
- )
367
- return local.client
368
-
369
- def _wait_with_jitter(self, base_time):
370
- """Wait with jitter to avoid thundering herd problem"""
371
- jitter = random.uniform(0, 1)
372
- wait_time = base_time + jitter
373
- time.sleep(wait_time)
374
-
375
- def _handle_rate_limit(self, retry_after=None):
376
- """Handle rate limit exceptions with proper backoff"""
377
- with self.retry_lock:
378
- self.retry_count += 1
379
-
380
- # If retry_after is provided in header, use it; otherwise use default
381
- wait_time = retry_after if retry_after else 30
382
-
383
- # Add jitter to avoid thundering herd problem
384
- jitter = random.uniform(0, 5)
385
- wait_time += jitter
386
-
387
- # Update last retry time - all threads can see when the last retry happened
388
- with self.last_retry_lock:
389
- self.last_retry_time = time.time()
390
-
391
- logger.warning(f"Rate limit exceeded. Waiting for {wait_time:.2f} seconds before retry.")
392
- time.sleep(wait_time)
393
-
394
- def _get_embedding(self, text: str) -> List[float]:
395
- """Get embeddings using Azure OpenAI."""
396
- max_retries = 5
397
-
398
- for attempt in range(max_retries):
399
- try:
400
- # Check if we need to wait based on embedding rate limiter
401
- wait_time = embedding_limiter.wait_if_needed()
402
- if wait_time > 0:
403
- time.sleep(wait_time)
404
-
405
- # Check if any thread recently hit a rate limit
406
- with self.last_retry_lock:
407
- time_since_last_retry = time.time() - self.last_retry_time
408
-
409
- # If a retry happened recently, stagger our requests
410
- if time_since_last_retry < 10:
411
- time.sleep(random.uniform(0.5, 3.0))
412
-
413
- client = self.get_openai_client()
414
- response = client.embeddings.create(
415
- model=AZURE_EMBEDDING_DEPLOYMENT_NAME,
416
- input=text
417
- )
418
-
419
- # Track successful API call
420
- with self.api_call_lock:
421
- self.api_calls += 1
422
-
423
- return response.data[0].embedding
424
-
425
- except Exception as e:
426
- error_msg = str(e).lower()
427
-
428
- # Handle rate limit errors
429
- if "429" in error_msg or "too many requests" in error_msg:
430
- self._handle_rate_limit()
431
- continue
432
-
433
- # Log other errors
434
- logger.error(f"Error attempt {attempt+1}/{max_retries} getting embedding: {str(e)}")
435
-
436
- if attempt < max_retries - 1:
437
- # Exponential backoff with jitter
438
- backoff_time = (2 ** attempt) + random.uniform(0, 1)
439
- time.sleep(backoff_time)
440
- else:
441
- logger.error(f"Failed to get embedding after {max_retries} attempts")
442
- return [0.0] * 3072 # Default dimension for embeddings
443
-
444
- def _generate_completion(self, system_prompt: str, user_prompt: str, temperature: float = 0.7, retries: int = 5) -> str:
445
- """Generate text completion using Azure OpenAI with improved error handling."""
446
- client = self.get_openai_client()
447
-
448
- for attempt in range(retries):
449
- try:
450
- # Check if we need to wait based on chat rate limiter
451
- wait_time = chat_limiter.wait_if_needed()
452
- if wait_time > 0:
453
- time.sleep(wait_time)
454
-
455
- # Check if any thread recently hit a rate limit
456
- with self.last_retry_lock:
457
- time_since_last_retry = time.time() - self.last_retry_time
458
-
459
- # If a retry happened recently, stagger our requests
460
- if time_since_last_retry < 10:
461
- time.sleep(random.uniform(0.5, 3.0))
462
-
463
- # Add explicit JSON formatting request to the system prompt
464
- enhanced_system_prompt = f"{system_prompt}\nImportant: Your response must be valid JSON only, with no explanations or additional text."
465
-
466
- # Add explicit JSON formatting instructions to the user prompt
467
- enhanced_user_prompt = f"{user_prompt}\n\nYour response should be formatted as valid JSON only. Do not include any text before or after the JSON."
468
-
469
- response = client.chat.completions.create(
470
- model=AZURE_OPENAI_DEPLOYMENT_NAME,
471
- messages=[
472
- {"role": "system", "content": enhanced_system_prompt},
473
- {"role": "user", "content": enhanced_user_prompt}
474
- ],
475
- temperature=temperature
476
- )
477
-
478
- # Track successful API call
479
- with self.api_call_lock:
480
- self.api_calls += 1
481
-
482
- content = response.choices[0].message.content.strip()
483
-
484
- # Remove any potential non-JSON content before and after the actual JSON
485
- if content.startswith("```json"):
486
- content = content.split("```json", 1)[1]
487
- if content.endswith("```"):
488
- content = content.rsplit("```", 1)[0]
489
-
490
- # Further cleanup to ensure we have valid JSON
491
- content = content.strip()
492
-
493
- # Check if the first character is not '{' but contains '{' somewhere
494
- if not content.startswith('{') and '{' in content:
495
- content = content[content.find('{'):]
496
-
497
- # Check if the last character is not '}' but contains '}' somewhere
498
- if not content.endswith('}') and '}' in content:
499
- content = content[:content.rfind('}')+1]
500
-
501
- try:
502
- # Parse and re-serialize to ensure valid JSON
503
- parsed_json = json.loads(content)
504
- return json.dumps(parsed_json)
505
- except json.JSONDecodeError:
506
- # If we can't parse the JSON, try to fix common issues
507
- # Replace single quotes with double quotes
508
- content = content.replace("'", '"')
509
- # Fix unquoted keys
510
- content = re.sub(r'(\s*?)(\w+)(\s*?):', r'\1"\2"\3:', content)
511
- try:
512
- parsed_json = json.loads(content)
513
- return json.dumps(parsed_json)
514
- except json.JSONDecodeError:
515
- if attempt < retries - 1:
516
- continue
517
- else:
518
- # Create minimal valid JSON as fallback
519
- logger.warning("Returning fallback JSON due to parsing error")
520
- return '{"error": "Could not generate valid JSON", "partial_content": "Content generation failed"}'
521
-
522
- except Exception as e:
523
- error_msg = str(e).lower()
524
-
525
- # Handle rate limit errors
526
- if "429" in error_msg or "too many requests" in error_msg:
527
- self._handle_rate_limit()
528
- continue
529
-
530
- # Log other errors
531
- logger.error(f"Error attempt {attempt+1}/{retries} generating completion: {str(e)}")
532
-
533
- if attempt < retries - 1:
534
- # Exponential backoff with jitter
535
- backoff_time = (2 ** attempt) + random.uniform(0, 1)
536
- time.sleep(backoff_time)
537
- else:
538
- logger.error(f"Failed to generate completion after {retries} attempts")
539
- # Return a minimal valid JSON as fallback
540
- return '{"error": "Failed to generate completion", "message": "Maximum retries exceeded"}'
541
-
542
- def generate_saas_profiles(self, num_profiles: int = 10) -> List[SaaSProfile]:
543
- """Generate a diverse set of SaaS company profiles with improved error handling."""
544
-
545
- profiles = []
546
-
547
- # Expanded SaaS categories with modern AI/ML and other specialized categories
548
- saas_categories = [
549
- # Core SaaS Categories
550
- "Project Management", "CRM", "Marketing Automation", "HR Software",
551
- "Customer Support", "Accounting", "Business Intelligence", "Collaboration",
552
- "DevOps", "Security", "E-commerce", "ERP", "Content Management",
553
-
554
- # AI/ML/LLM Specific
555
- "LLM Development Platform", "AI Orchestration", "Prompt Engineering Tools",
556
- "AI Agent Framework", "Machine Learning Operations", "Vector Database",
557
- "AI Content Generation", "Computer Vision Platform", "NLP Solutions",
558
- "AI Model Marketplace", "Semantic Search", "AI Development Environment",
559
- "Multimodal AI Platform", "AI Workflow Automation", "GenAI Enterprise Solutions",
560
-
561
- # Emerging Tech SaaS
562
- "Blockchain Services", "IoT Platform", "Augmented Reality", "Virtual Reality",
563
- "Edge Computing", "Quantum Computing Services", "Digital Twin Platform",
564
-
565
- # Industry-Specific SaaS
566
- "HealthTech", "FinTech", "EdTech", "LegalTech", "PropTech", "AgriTech",
567
- "InsurTech", "RegTech", "CleanTech", "BioTech", "FoodTech", "RetailTech",
568
-
569
- # Data-Focused SaaS
570
- "Data Integration", "ETL Platform", "Data Visualization", "Data Governance",
571
- "Big Data Analytics", "Predictive Analytics", "Data Labeling", "Data Quality",
572
- "Real-time Analytics", "Data Pipeline", "Time Series Database",
573
-
574
- # Specialized SaaS
575
- "API Management", "Workflow Automation", "Knowledge Management", "Network Monitoring",
576
- "Identity Management", "Email Marketing", "Video Conferencing", "Product Analytics",
577
- "Customer Data Platform", "Event Management", "Subscription Management",
578
- "Conversational AI", "Pricing Optimization", "Sales Enablement", "Revenue Operations",
579
-
580
- # Developer Tools
581
- "Code Repository", "CI/CD Pipeline", "Testing Automation", "Microservices Platform",
582
- "Serverless Computing", "API Development", "Low-Code Platform", "No-Code Platform",
583
- "Database Management", "Container Orchestration", "Application Monitoring",
584
-
585
- # Security SaaS
586
- "Endpoint Protection", "Cloud Security", "Identity Access Management",
587
- "Vulnerability Management", "Threat Intelligence", "Data Loss Prevention",
588
- "Security Information Management", "Privileged Access Management", "Zero Trust Security",
589
-
590
- # Remote Work SaaS
591
- "Virtual Desktop", "Remote Team Collaboration", "Digital Workplace", "Employee Monitoring",
592
- "Virtual Onboarding", "Distributed Team Management", "Workforce Analytics"
593
- ]
594
-
595
- # Expanded industries list to match the diverse SaaS categories
596
- industries = [
597
- # Traditional Industries
598
- "Technology", "Healthcare", "Finance", "Education", "Retail",
599
- "Manufacturing", "Media", "Real Estate", "Legal", "Non-profit",
600
-
601
- # Expanded Technology Sectors
602
- "Software Development", "Cloud Services", "Data Science", "Artificial Intelligence",
603
- "Cybersecurity", "Telecommunications", "Gaming", "Digital Marketing",
604
-
605
- # Specific Verticals
606
- "E-commerce", "Banking", "Insurance", "Pharmaceuticals", "Entertainment",
607
- "Hospitality", "Transportation", "Logistics", "Construction", "Energy",
608
- "Agriculture", "Automotive", "Aerospace", "Public Sector", "Professional Services",
609
-
610
- # Emerging Industries
611
- "Renewable Energy", "Biotechnology", "Nanotechnology", "Space Technology",
612
- "Smart Cities", "Sustainable Development", "Circular Economy",
613
-
614
- # Service Sectors
615
- "Consulting", "Staffing", "Training & Development", "Research", "Marketing Services"
616
- ]
617
-
618
- company_sizes = ["small", "medium", "large", "enterprise"]
619
-
620
- # Calculate effective thread count - be conservative for profile generation
621
- effective_threads = min(num_profiles, 15)
622
-
623
- # Use ThreadPoolExecutor for parallel profile generation
624
- with concurrent.futures.ThreadPoolExecutor(max_workers=effective_threads) as executor:
625
- futures = []
626
-
627
- # Submit each profile generation task
628
- for i in range(num_profiles):
629
- category = random.choice(saas_categories)
630
- industry = random.choice(industries)
631
- size = random.choice(company_sizes)
632
-
633
- futures.append(executor.submit(
634
- self._generate_single_profile, i, category, industry, size
635
- ))
636
-
637
- # Collect results as they complete
638
- for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Generating SaaS profiles"):
639
- try:
640
- profile = future.result()
641
- if profile:
642
- profiles.append(profile)
643
- except Exception as e:
644
- logger.error(f"Error in profile generation thread: {str(e)}")
645
-
646
- logger.info(f"Generated {len(profiles)} SaaS profiles")
647
- return profiles
648
-
649
- def _generate_single_profile(self, i: int, category: str, industry: str, size: str) -> Optional[SaaSProfile]:
650
- """Generate a single SaaS profile."""
651
- max_retries = 3
652
- for attempt in range(max_retries):
653
- try:
654
- # Use a simpler prompt focused on just creating valid JSON
655
- system_prompt = "You are a SaaS industry expert. Generate a JSON object according to the specification."
656
-
657
- user_prompt = f"""
658
- Create a SaaS company profile for a {category} software company targeting {size} businesses in the {industry} industry.
659
-
660
- Return ONLY a JSON object with this exact structure:
661
- {{
662
- "company_id": "saas-{i}",
663
- "company_name": "Company name",
664
- "product_name": "Product name",
665
- "product_description": "A 2-3 sentence description",
666
- "target_audience": ["Target 1", "Target 2", "Target 3"],
667
- "key_features": ["Feature 1", "Feature 2", "Feature 3", "Feature 4"],
668
- "value_propositions": ["Value prop 1", "Value prop 2", "Value prop 3"],
669
- "pricing_structure": {{
670
- "model": "Pricing model type",
671
- "tiers": [
672
- {{
673
- "name": "Tier name",
674
- "price": "Price",
675
- "features": ["Feature 1", "Feature 2"]
676
- }}
677
- ]
678
- }},
679
- "common_objections": ["Objection 1", "Objection 2", "Objection 3", "Objection 4"],
680
- "industry": "{industry}",
681
- "company_size": "{size}"
682
- }}
683
-
684
- Ensure your response is ONLY valid JSON with no additional text, markdown code blocks, or explanations.
685
- """
686
-
687
- content = self._generate_completion(system_prompt, user_prompt)
688
- profile_json = json.loads(content)
689
-
690
- profile = SaaSProfile(
691
- company_id=profile_json.get("company_id", f"saas-{i}"),
692
- company_name=profile_json["company_name"],
693
- product_name=profile_json["product_name"],
694
- product_description=profile_json["product_description"],
695
- target_audience=profile_json["target_audience"],
696
- key_features=profile_json["key_features"],
697
- value_propositions=profile_json["value_propositions"],
698
- pricing_structure=profile_json["pricing_structure"],
699
- common_objections=profile_json["common_objections"],
700
- industry=profile_json["industry"],
701
- company_size=profile_json["company_size"]
702
- )
703
-
704
- logger.info(f"Successfully generated profile {i}: {profile.company_name}")
705
- return profile
706
-
707
- except Exception as e:
708
- logger.error(f"Error attempt {attempt+1}/{max_retries} generating profile {i}: {str(e)}")
709
- if attempt < max_retries - 1:
710
- # Exponential backoff
711
- backoff_time = (2 ** attempt) + random.uniform(0, 1)
712
- time.sleep(backoff_time)
713
-
714
- # Create a fallback profile on final attempt
715
- logger.warning(f"Using fallback profile for {i}")
716
- return SaaSProfile(
717
- company_id=f"saas-{i}",
718
- company_name=f"{category} Solutions Inc",
719
- product_name=f"{category} Pro",
720
- product_description=f"A {category} solution for {size} businesses in the {industry} industry.",
721
- target_audience=[f"{industry} professionals", f"{size} businesses", "Department managers"],
722
- key_features=["Easy setup", "Intuitive interface", "Advanced reporting", "Team collaboration"],
723
- value_propositions=["Increase productivity", "Reduce costs", "Improve visibility"],
724
- pricing_structure={
725
- "model": "tiered",
726
- "tiers": [
727
- {
728
- "name": "Basic",
729
- "price": "$10/user/month",
730
- "features": ["Core features", "Email support"]
731
- }
732
- ]
733
- },
734
- common_objections=["Too expensive", "Complex implementation", "Training required", "Integration concerns"],
735
- industry=industry,
736
- company_size=size
737
- )
738
-
739
- def _generate_customer_persona(self, profile: SaaSProfile) -> Dict:
740
- """Generate a realistic customer persona based on the SaaS profile with improved diversity."""
741
- max_retries = 3
742
- for attempt in range(max_retries):
743
- try:
744
- # Select a random persona template for more diversity
745
- persona_template = random.choice(self.persona_templates)
746
-
747
- system_prompt = """You are an expert in creating realistic customer personas.
748
- Generate a JSON object according to the specification. Make the persona feel real, with specific challenges and needs."""
749
-
750
- user_prompt = f"""
751
- Generate a realistic customer persona for a potential {profile.product_name} customer based on:
752
-
753
- Company: {profile.company_name}
754
- Product: {profile.product_name}
755
- Description: {profile.product_description}
756
- Target Audience: {", ".join(profile.target_audience)}
757
- Industry: {profile.industry}
758
-
759
- Please base this persona loosely on the following template:
760
- Template name: {persona_template["name"]}
761
- Traits: {", ".join(persona_template["traits"])}
762
- Communication style: {persona_template["communication_style"]}
763
- Typical objections: {", ".join(persona_template["typical_objections"])}
764
-
765
- Return ONLY a JSON object with this exact structure:
766
- {{
767
- "name": "Full customer name (realistic)",
768
- "company": "Customer's company name (specific, not generic)",
769
- "role": "Customer's specific job title",
770
- "company_size": "{profile.company_size}",
771
- "industry": "{profile.industry}",
772
- "pain_points": ["Specific pain point 1", "Specific pain point 2", "Specific pain point 3"],
773
- "needs": ["Specific need 1", "Specific need 2", "Specific need 3"],
774
- "communication_preferences": ["Email", "Phone", "Chat", etc.],
775
- "technical_expertise": "low/medium/high",
776
- "budget_sensitivity": "low/medium/high",
777
- "decision_making_authority": "none/influence/decide",
778
- "personality_traits": ["Trait 1", "Trait 2", "Trait 3"],
779
- "background": "Brief background of the customer (2-3 sentences)",
780
- "objection_style": "How they typically raise objections (direct, passive, etc.)"
781
- }}
782
-
783
- Ensure your response is ONLY valid JSON with no additional text or markdown.
784
- """
785
-
786
- content = self._generate_completion(system_prompt, user_prompt, temperature=0.8)
787
- persona_json = json.loads(content)
788
-
789
- # Adding more details to each persona to enhance realism
790
- persona_json["preferred_speech_patterns"] = random.sample([p["pattern"] for p in self.speech_patterns], 2)
791
- persona_json["primary_need_type"] = random.choice([n["type"] for n in self.customer_needs])
792
-
793
- return persona_json
794
-
795
- except Exception as e:
796
- logger.error(f"Error attempt {attempt+1}/{max_retries} generating persona: {str(e)}")
797
- if attempt < max_retries - 1:
798
- # Exponential backoff
799
- backoff_time = (2 ** attempt) + random.uniform(0, 1)
800
- time.sleep(backoff_time)
801
- else:
802
- # Return a default persona as fallback but with more variation
803
- logger.warning(f"Using fallback persona for {profile.company_name}")
804
- return {
805
- "name": f"{random.choice(['Alex', 'Jordan', 'Taylor', 'Sam', 'Morgan', 'Jamie'])} {random.choice(['Smith', 'Johnson', 'Wong', 'Garcia', 'Patel', 'Kim'])}",
806
- "company": f"{random.choice(['Innovative', 'Global', 'Modern', 'Premier', 'Advanced'])} {random.choice(['Systems', 'Solutions', 'Technologies', 'Enterprises', 'Group'])}",
807
- "role": random.choice(["Department Manager", "IT Director", "Operations Lead", "VP of Technology", "CFO", "CEO", "CTO"]),
808
- "company_size": profile.company_size,
809
- "industry": profile.industry,
810
- "pain_points": ["Efficiency issues", "Cost management", "Integration challenges"],
811
- "needs": ["Better reporting", "Team collaboration", "Process automation"],
812
- "communication_preferences": random.sample(["Email", "Phone", "Chat", "In-person", "Video call"], 2),
813
- "technical_expertise": random.choice(["low", "medium", "high"]),
814
- "budget_sensitivity": random.choice(["low", "medium", "high"]),
815
- "decision_making_authority": random.choice(["none", "influence", "decide"]),
816
- "personality_traits": random.sample(["analytical", "direct", "cautious", "friendly", "detail-oriented", "big-picture", "skeptical"], 3),
817
- "background": "Has been with the company for 5 years. Previously worked at a competitor.",
818
- "objection_style": random.choice(["direct", "passive-aggressive", "analytical", "price-focused"]),
819
- "preferred_speech_patterns": random.sample([p["pattern"] for p in self.speech_patterns], 2),
820
- "primary_need_type": random.choice([n["type"] for n in self.customer_needs])
821
- }
822
-
823
- def _generate_conversation_scenario(self, profile: SaaSProfile, customer_persona: Dict) -> Dict:
824
- """Generate a diverse conversation scenario with improved complexity."""
825
- max_retries = 3
826
- for attempt in range(max_retries):
827
- try:
828
- # Select random conversation style and flow pattern for diversity
829
- conversation_style = random.choice(self.conversation_styles)
830
- conversation_flow = random.choice(self.conversation_flows)
831
- communication_channel = random.choice(list(self.communication_channels.keys()))
832
-
833
- # Randomize expected outcome to ensure dataset balance
834
- expected_outcome = random.choice([True, False])
835
-
836
- # Generate a conversion probability that matches the expected outcome
837
- if expected_outcome:
838
- # For positive outcomes, higher probability
839
- expected_probability = random.uniform(0.6, 0.95)
840
- else:
841
- # For negative outcomes, lower probability
842
- expected_probability = random.uniform(0.05, 0.4)
843
-
844
- system_prompt = """You are an expert in creating realistic sales scenarios.
845
- Generate a JSON object according to the specification. Focus on making the scenario detailed and context-rich."""
846
-
847
- user_prompt = f"""
848
- Create a detailed sales scenario between a {profile.company_name} representative and this customer:
849
-
850
- {json.dumps(customer_persona, indent=2)}
851
-
852
- Company & Product Details:
853
- - Product: {profile.product_name}
854
- - Description: {profile.product_description}
855
- - Key Features: {", ".join(profile.key_features)}
856
- - Common Objections: {", ".join(profile.common_objections)}
857
-
858
- Use the following parameters to shape the scenario:
859
- - Conversation style: {conversation_style}
860
- - Conversation flow pattern: {conversation_flow}
861
- - Communication channel: {communication_channel} ({self.communication_channels[communication_channel]["formality"]} formality, {self.communication_channels[communication_channel]["response_time"]} response time)
862
- - Expected outcome: {"successful conversion" if expected_outcome else "no conversion"}
863
-
864
- Return ONLY a JSON object with this exact structure:
865
- {{
866
- "customer_persona": {json.dumps(customer_persona)},
867
- "sales_channel": "{communication_channel}",
868
- "conversation_context": "Detailed background context for the conversation",
869
- "customer_intent": "Specific reason why the customer initiated contact",
870
- "customer_knowledge_level": "How much the customer already knows about the product or solution space",
871
- "objection_focus": ["Specific objection 1", "Specific objection 2"],
872
- "complexity": "simple/moderate/complex",
873
- "expected_outcome": {"true" if expected_outcome else "false"},
874
- "expected_conversion_probability": {expected_probability},
875
- "conversation_style": "{conversation_style}",
876
- "conversation_flow": "{conversation_flow}",
877
- "critical_moment": "The turning point in the conversation where the outcome might be decided",
878
- "time_pressure": "Whether there's urgency for a decision (none/some/high)",
879
- "external_factors": ["Factor 1", "Factor 2"]
880
- }}
881
-
882
- Ensure your response is ONLY valid JSON with no additional text or markdown.
883
- """
884
-
885
- content = self._generate_completion(system_prompt, user_prompt, temperature=0.8)
886
- scenario_json = json.loads(content)
887
-
888
- # Ensure expected_outcome is a boolean
889
- if isinstance(scenario_json["expected_outcome"], str):
890
- scenario_json["expected_outcome"] = scenario_json["expected_outcome"].lower() == "true"
891
-
892
- # Ensure expected_conversion_probability is a float
893
- if isinstance(scenario_json["expected_conversion_probability"], str):
894
- scenario_json["expected_conversion_probability"] = float(scenario_json["expected_conversion_probability"])
895
-
896
- return scenario_json
897
-
898
- except Exception as e:
899
- logger.error(f"Error attempt {attempt+1}/{max_retries} generating scenario: {str(e)}")
900
- if attempt < max_retries - 1:
901
- # Exponential backoff
902
- backoff_time = (2 ** attempt) + random.uniform(0, 1)
903
- time.sleep(backoff_time)
904
- else:
905
- # Return a default scenario as fallback but with more variation
906
- logger.warning(f"Using fallback scenario for {profile.company_name}")
907
-
908
- # Randomize expected outcome
909
- expected_outcome = random.choice([True, False])
910
- expected_probability = 0.7 if expected_outcome else 0.3
911
-
912
- return {
913
- "customer_persona": customer_persona,
914
- "sales_channel": random.choice(list(self.communication_channels.keys())),
915
- "conversation_context": random.choice(["Initial inquiry", "Follow-up call", "Demo meeting", "Pricing discussion", "Implementation planning"]),
916
- "customer_intent": random.choice(["Exploring options", "Comparing vendors", "Addressing urgent need", "Planning future implementation", "Evaluating potential ROI"]),
917
- "customer_knowledge_level": random.choice(["minimal", "moderate", "extensive"]),
918
- "objection_focus": profile.common_objections[:2] if len(profile.common_objections) >= 2 else ["Price", "Implementation"],
919
- "complexity": random.choice(["simple", "moderate", "complex"]),
920
- "expected_outcome": expected_outcome,
921
- "expected_conversion_probability": expected_probability,
922
- "conversation_style": random.choice(self.conversation_styles),
923
- "conversation_flow": random.choice(self.conversation_flows),
924
- "critical_moment": "Discussion of pricing and ROI",
925
- "time_pressure": random.choice(["none", "some", "high"]),
926
- "external_factors": ["Budget cycle", "Competitor evaluation"]
927
- }
928
-
929
- def _apply_speech_patterns(self, text: str, patterns: List[str], probability: float = 0.3) -> str:
930
- """Apply realistic speech patterns to make text more human."""
931
- if not text or not patterns or random.random() > probability:
932
- return text
933
-
934
- modified_text = text
935
-
936
- for pattern_name in patterns:
937
- # Find the pattern details
938
- pattern_details = next((p for p in self.speech_patterns if p["pattern"] == pattern_name), None)
939
- if not pattern_details or random.random() > 0.4: # Only apply some patterns
940
- continue
941
-
942
- examples = pattern_details["examples"]
943
-
944
- if pattern_name == "filler_words":
945
- # Insert filler words
946
- words = modified_text.split()
947
- for i in range(len(words) - 1):
948
- if random.random() < 0.1: # 10% chance per position
949
- filler = random.choice(examples)
950
- words.insert(i + 1, filler)
951
- modified_text = " ".join(words)
952
-
953
- elif pattern_name == "typos":
954
- # Replace some words with typos
955
- words = modified_text.split()
956
- for i, word in enumerate(words):
957
- if len(word) > 3 and random.random() < 0.05: # 5% chance per word
958
- # Simple typo simulation - swap two adjacent characters
959
- char_list = list(word)
960
- j = random.randint(0, len(char_list) - 2)
961
- char_list[j], char_list[j + 1] = char_list[j + 1], char_list[j]
962
- words[i] = "".join(char_list)
963
- modified_text = " ".join(words)
964
-
965
- elif pattern_name == "over_punctuation":
966
- # Add excessive punctuation
967
- for punct in ["!", "?", "..."]:
968
- modified_text = modified_text.replace(f"{punct}", random.choice([f"{punct}", f"{punct}{punct}", f"{punct}{punct}{punct}"]))
969
-
970
- elif pattern_name == "self_corrections":
971
- # Add self-corrections
972
- sentences = modified_text.split('. ')
973
- if len(sentences) > 1:
974
- i = random.randint(0, len(sentences) - 1)
975
- correction = random.choice(examples)
976
- sentences[i] = f"{sentences[i]}... {correction}, {sentences[i]}"
977
- modified_text = '. '.join(sentences)
978
-
979
- elif pattern_name == "emphasis_capital":
980
- # Capitalize some words for emphasis
981
- words = modified_text.split()
982
- for i, word in enumerate(words):
983
- if len(word) > 3 and word.isalpha() and random.random() < 0.05:
984
- words[i] = word.upper()
985
- modified_text = " ".join(words)
986
-
987
- return modified_text
988
-
989
- def _apply_channel_formatting(self, message: str, channel: str) -> str:
990
- """Apply formatting specific to different communication channels."""
991
- if not channel in self.communication_channels:
992
- return message
993
-
994
- channel_format = self.communication_channels[channel]
995
- modified_message = message
996
-
997
- # Apply channel-specific formatting
998
- if channel == "email":
999
- # Add email elements like signatures or formal greetings randomly
1000
- if random.random() < 0.3 and "sales_rep" in message:
1001
- signature = f"\n\nBest regards,\n[Name]\n[Company]\n[Contact Info]"
1002
- modified_message += signature
1003
-
1004
- elif channel == "live_chat":
1005
- # Add chat elements like quick responses or emojis
1006
- if random.random() < 0.4:
1007
- emojis = ["👍", "😊", "👋", "👏", "🙌", "💯", "🤔", "📊", "📈"]
1008
- if random.random() < 0.5:
1009
- modified_message += f" {random.choice(emojis)}"
1010
- else:
1011
- modified_message = f"{random.choice(emojis)} {modified_message}"
1012
-
1013
- elif channel == "phone_call" or channel == "video_call":
1014
- # Add verbal pause indicators
1015
- verbal_pauses = ["*pauses*", "*brief silence*", "*thinking*"]
1016
- if random.random() < 0.2:
1017
- sentences = modified_message.split('. ')
1018
- if len(sentences) > 1:
1019
- i = random.randint(0, len(sentences) - 1)
1020
- sentences[i] = f"{sentences[i]}. {random.choice(verbal_pauses)} "
1021
- modified_message = '. '.join(sentences)
1022
-
1023
- elif channel == "sms":
1024
- # Shorten message and add abbreviations
1025
- if len(modified_message) > 100 and random.random() < 0.5:
1026
- # Replace some common words with abbreviations
1027
- abbr = {"with": "w/", "without": "w/o", "thanks": "thx", "please": "pls",
1028
- "about": "abt", "meeting": "mtg", "tomorrow": "tmrw"}
1029
- for word, abbr_word in abbr.items():
1030
- if random.random() < 0.5:
1031
- modified_message = re.sub(r'\b' + word + r'\b', abbr_word, modified_message, flags=re.IGNORECASE)
1032
-
1033
- return modified_message
1034
-
1035
- def _generate_conversation(self, profile: SaaSProfile, scenario: Dict) -> Dict:
1036
- """Generate a complete human-like sales conversation with non-linear flows and realistic patterns."""
1037
- max_retries = 3
1038
- for attempt in range(max_retries):
1039
- try:
1040
- # Extract key scenario parameters for controlling the conversation
1041
- channel = scenario.get("sales_channel", "email")
1042
- conversation_style = scenario.get("conversation_style", "direct_professional")
1043
- conversation_flow = scenario.get("conversation_flow", "standard_linear")
1044
- expected_outcome = scenario.get("expected_outcome", True)
1045
-
1046
- # Prepare persona information
1047
- persona = scenario.get("customer_persona", {})
1048
- persona_name = persona.get("name", "Customer")
1049
- speech_patterns = persona.get("preferred_speech_patterns",
1050
- random.sample([p["pattern"] for p in self.speech_patterns], 2))
1051
-
1052
- # Prepare template parameters based on scenario
1053
- min_messages = 8 # Minimum messages for a meaningful conversation
1054
- max_messages = 18 # Maximum to keep conversations reasonably sized
1055
-
1056
- # Adjust message count based on complexity
1057
- if scenario.get("complexity") == "simple":
1058
- target_messages = random.randint(8, 12)
1059
- elif scenario.get("complexity") == "complex":
1060
- target_messages = random.randint(14, 18)
1061
- else: # moderate
1062
- target_messages = random.randint(10, 14)
1063
-
1064
- # Further customize conversation parameters based on flow type
1065
- flow_params = {}
1066
- if conversation_flow == "multiple_objection_loops":
1067
- flow_params["objections_to_raise"] = min(len(profile.common_objections), 3)
1068
- flow_params["objection_resolution_probability"] = 0.7 if expected_outcome else 0.4
1069
- elif conversation_flow == "subject_switching":
1070
- flow_params["topic_switches"] = random.randint(2, 4)
1071
- flow_params["switch_probability"] = 0.3
1072
- elif conversation_flow == "interrupted_followup":
1073
- flow_params["interruption_point"] = random.randint(3, 5)
1074
- flow_params["followup_delay"] = "a few hours" if channel in ["email", "chat"] else "a week"
1075
-
1076
- # Create a conversation prompt that allows for natural, human-like dialogue
1077
- system_prompt = f"""You are an expert in creating realistic sales conversations.
1078
- Generate a JSON object with a natural, imperfect conversation between a sales rep and customer.
1079
-
1080
- Important guidelines:
1081
- - The conversation should feel HUMAN and NATURAL, not scripted or perfect
1082
- - Include human elements: hesitations, typos, interruptions, tangents, repetition, in a millennial style
1083
- - Do NOT open with cheesy greetings like "Hi X, this is Y from Z company" unless natural for the context
1084
- - The customer should sometimes be unclear, ambiguous, or send incomplete thoughts
1085
- - People sometimes send multiple messages in a row
1086
- - Sometimes include pauses or pacing in the conversation
1087
- - Not every objection needs to be perfectly addressed
1088
- - Use natural language that matches the {channel} communication channel"""
1089
-
1090
- user_prompt = f"""
1091
- Generate a realistic {channel} sales conversation between a {profile.company_name} representative and a customer with:
1092
-
1093
- CUSTOMER DETAILS:
1094
- Name: {persona_name}
1095
- Company: {persona.get('company', 'Company')}
1096
- Role: {persona.get('role', 'Role')}
1097
- Industry: {persona.get('industry', profile.industry)}
1098
- Current pain points: {', '.join(persona.get('pain_points', ['Unspecified']))}
1099
- Communication style: {persona.get('objection_style', 'direct')}
1100
- Tech expertise: {persona.get('technical_expertise', 'medium')}
1101
-
1102
- CONVERSATION CONTEXT:
1103
- Channel: {channel}
1104
- Context: {scenario.get('conversation_context', 'Initial inquiry')}
1105
- Customer intent: {scenario.get('customer_intent', 'Exploring options')}
1106
- Flow pattern: {conversation_flow}
1107
- Style: {conversation_style}
1108
- Expected outcome: {"conversion" if expected_outcome else "no conversion"}
1109
- Primary objections: {', '.join(scenario.get('objection_focus', profile.common_objections[:2]))}
1110
-
1111
- PRODUCT DETAILS:
1112
- Product: {profile.product_name}
1113
- Description: {profile.product_description}
1114
- Key features: {', '.join(profile.key_features)}
1115
- Value props: {', '.join(profile.value_propositions)}
1116
- Pricing: {profile.pricing_structure.get('model', 'tiered')} - {profile.pricing_structure.get('tiers', [{}])[0].get('price', '$X/month')}
1117
-
1118
- Return ONLY a JSON object with this exact structure:
1119
- {{
1120
- "messages": [
1121
- {{"speaker": "customer/sales_rep", "message": "message text"}}
1122
- ],
1123
- "outcome": {"true" if expected_outcome else "false"},
1124
- "key_objections": ["Specific objection 1", "Specific objection 2"],
1125
- "key_value_props_mentioned": ["Value prop 1", "Value prop 2"],
1126
- "customer_engagement_level": 0.X,
1127
- "sales_rep_effectiveness": 0.X,
1128
- "conversation_length": X,
1129
- "conversion_probability_at_turn": {{"0": 0.X, "1": 0.X}}
1130
- }}
1131
-
1132
- Include {target_messages} messages in the conversation. The conversion_probability_at_turn should show
1133
- how the probability changes throughout the conversation.
1134
-
1135
- IMPORTANT FORMATTING:
1136
- - Make messages sound like real humans typing/talking with millennial style - include occasional typos, hesitations, filler words
1137
- - Format the conversation appropriately for a {channel} conversation
1138
- - Messages should vary in length - some short, some longer
1139
- - Avoid perfect grammar and complete sentences when natural
1140
- - Use contractions, abbreviations, and casual language where appropriate
1141
- - For the customer, occasionally use multiple messages in a row
1142
- - Use natural greetings appropriate to the channel, not formulaic ones
1143
- """
1144
-
1145
- content = self._generate_completion(system_prompt, user_prompt, temperature=0.9)
1146
- conversation_json = json.loads(content)
1147
-
1148
- # Apply additional human-like formatting and speech patterns to each message
1149
- for i, message in enumerate(conversation_json["messages"]):
1150
- speaker = message.get("speaker", "")
1151
- message_text = message.get("message", "")
1152
-
1153
- # Apply appropriate speech patterns based on speaker
1154
- if speaker == "customer":
1155
- # Apply customer persona speech patterns
1156
- message_text = self._apply_speech_patterns(message_text, speech_patterns, 0.5)
1157
- else:
1158
- # Apply general speech patterns for sales rep
1159
- rep_patterns = random.sample([p["pattern"] for p in self.speech_patterns], 2)
1160
- message_text = self._apply_speech_patterns(message_text, rep_patterns, 0.3)
1161
-
1162
- # Apply channel-specific formatting
1163
- message_text = self._apply_channel_formatting(message_text, channel)
1164
-
1165
- # Apply non-linearity based on conversation flow
1166
- if conversation_flow == "subject_switching" and random.random() < flow_params.get("switch_probability", 0):
1167
- # Add topic switch indicators
1168
- switches = ["By the way", "Actually, I also wanted to ask", "On another note",
1169
- "While we're talking", "That reminds me", "Before I forget"]
1170
- message_text += f" {random.choice(switches)}, {random.choice(profile.key_features)}?"
1171
-
1172
- # Update the message
1173
- conversation_json["messages"][i]["message"] = message_text
1174
-
1175
- # Add markers for interrupted conversations if applicable
1176
- if conversation_flow == "interrupted_followup":
1177
- interrupt_point = flow_params.get("interruption_point", 4)
1178
- if len(conversation_json["messages"]) > interrupt_point + 2:
1179
- # Add interruption marker
1180
- interrupt_idx = min(interrupt_point, len(conversation_json["messages"]) - 3)
1181
-
1182
- # Add time passage marker
1183
- time_marker = {"speaker": "system", "message": f"--- {flow_params.get('followup_delay', 'some time')} later ---"}
1184
- conversation_json["messages"].insert(interrupt_idx + 1, time_marker)
1185
-
1186
- # Add follow-up message from sales rep
1187
- followup = {"speaker": "sales_rep", "message": self._apply_speech_patterns(
1188
- f"Hi {persona_name}, I wanted to follow up on our previous conversation about {profile.product_name}. Have you had a chance to think more about it?",
1189
- random.sample([p["pattern"] for p in self.speech_patterns], 2)
1190
- )}
1191
- conversation_json["messages"].insert(interrupt_idx + 2, followup)
1192
-
1193
- # Ensure outcome is a boolean
1194
- if isinstance(conversation_json["outcome"], str):
1195
- conversation_json["outcome"] = conversation_json["outcome"].lower() == "true"
1196
-
1197
- # Ensure numeric values are floats/ints
1198
- if isinstance(conversation_json["customer_engagement_level"], str):
1199
- conversation_json["customer_engagement_level"] = float(conversation_json["customer_engagement_level"])
1200
-
1201
- if isinstance(conversation_json["sales_rep_effectiveness"], str):
1202
- conversation_json["sales_rep_effectiveness"] = float(conversation_json["sales_rep_effectiveness"])
1203
-
1204
- if isinstance(conversation_json["conversation_length"], str):
1205
- conversation_json["conversation_length"] = int(conversation_json["conversation_length"])
1206
-
1207
- # Ensure probability trajectory has numeric keys and values
1208
- probability_trajectory = {}
1209
- for k, v in conversation_json["conversion_probability_at_turn"].items():
1210
- if isinstance(v, str):
1211
- v = float(v)
1212
- probability_trajectory[int(k)] = float(v)
1213
- conversation_json["conversion_probability_at_turn"] = probability_trajectory
1214
-
1215
- # Add scenario data to the conversation for reference
1216
- conversation_json["scenario"] = {
1217
- "channel": channel,
1218
- "conversation_style": conversation_style,
1219
- "conversation_flow": conversation_flow
1220
- }
1221
-
1222
- return conversation_json
1223
-
1224
- except Exception as e:
1225
- logger.error(f"Error attempt {attempt+1}/{max_retries} generating conversation: {str(e)}")
1226
- if attempt < max_retries - 1:
1227
- # Exponential backoff
1228
- backoff_time = (2 ** attempt) + random.uniform(0, 1)
1229
- time.sleep(backoff_time)
1230
- else:
1231
- # Return a minimal conversation as fallback
1232
- logger.warning(f"Using fallback conversation for {profile.company_name}")
1233
- expected_outcome = scenario.get("expected_outcome", True)
1234
-
1235
- # Create more varied fallback conversations
1236
- starters = [
1237
- "Hey, I've been looking around for a solution like yours.",
1238
- "I need some help with my current processes.",
1239
- "Been hearing about your product, got some questions.",
1240
- "Our team needs something better than what we're using.",
1241
- "Quick question about your pricing."
1242
- ]
1243
-
1244
- responses = [
1245
- f"Thanks for reaching out! What specific challenges are you facing?",
1246
- f"Happy to help! What's your current setup like?",
1247
- f"I'd be glad to answer questions. What would you like to know?",
1248
- f"Sure thing. What's not working with your current solution?",
1249
- f"Of course, I can walk you through our pricing. What's your use case?"
1250
- ]
1251
-
1252
- # Generate a basic conversation with some variation
1253
- messages = [
1254
- {"speaker": "customer", "message": random.choice(starters)},
1255
- {"speaker": "sales_rep", "message": random.choice(responses)},
1256
- {"speaker": "customer", "message": f"We're looking for a {profile.product_name} solution. What makes your product different?"},
1257
- {"speaker": "sales_rep", "message": f"Our {profile.product_name} stands out because of {profile.value_propositions[0] if profile.value_propositions else 'its features'}. Many of our customers appreciate this."}
1258
- ]
1259
-
1260
- # Add a bit more variation based on expected outcome
1261
- if expected_outcome:
1262
- messages.append({"speaker": "customer", "message": "That sounds interesting. Can you tell me more about your pricing?"})
1263
- messages.append({"speaker": "sales_rep", "message": f"Our pricing starts at {profile.pricing_structure.get('tiers', [{}])[0].get('price', '$X/month')}. Would you like to schedule a demo?"})
1264
- messages.append({"speaker": "customer", "message": "Yes, that would be helpful. Let's set something up for next week."})
1265
- else:
1266
- messages.append({"speaker": "customer", "message": "That's interesting, but I'm not sure it fits our needs right now. Let me think about it."})
1267
- messages.append({"speaker": "sales_rep", "message": f"I understand. Would it be helpful if I sent you some more information about our {profile.product_name}?"})
1268
- messages.append({"speaker": "customer", "message": "Maybe later. We're still evaluating other options at the moment."})
1269
-
1270
- # Create probability trajectory
1271
- probability_trajectory = {}
1272
- for i in range(len(messages)):
1273
- if expected_outcome:
1274
- prob = min(0.5 + i * 0.07, 0.9)
1275
- else:
1276
- prob = max(0.5 - i * 0.07, 0.1)
1277
- probability_trajectory[i] = prob
1278
-
1279
- return {
1280
- "messages": messages,
1281
- "outcome": expected_outcome,
1282
- "key_objections": scenario.get("objection_focus", ["Price", "Implementation"]),
1283
- "key_value_props_mentioned": profile.value_propositions[:2] if len(profile.value_propositions) >= 2 else ["Value", "Efficiency"],
1284
- "customer_engagement_level": 0.7 if expected_outcome else 0.4,
1285
- "sales_rep_effectiveness": 0.6 if expected_outcome else 0.5,
1286
- "conversation_length": len(messages),
1287
- "conversion_probability_at_turn": probability_trajectory,
1288
- "scenario": {
1289
- "channel": scenario.get("sales_channel", "email"),
1290
- "conversation_style": scenario.get("conversation_style", "direct_professional"),
1291
- "conversation_flow": scenario.get("conversation_flow", "standard_linear")
1292
- }
1293
- }
1294
-
1295
- def _generate_full_conversation(self, profile_idx: int, conversation_idx: int) -> Dict:
1296
- """Generate a complete conversation from profile to final conversation data."""
1297
- with self.profile_lock:
1298
- profile = self.profiles[profile_idx]
1299
-
1300
- try:
1301
- # Generate customer persona with more richness and diversity
1302
- persona = self._generate_customer_persona(profile)
1303
-
1304
- # Generate conversation scenario with more variables
1305
- scenario = self._generate_conversation_scenario(profile, persona)
1306
-
1307
- # Generate complete conversation with more natural and varied flow
1308
- conversation_data = self._generate_conversation(profile, scenario)
1309
-
1310
- # Get conversation embeddings
1311
- full_text = " ".join([msg["message"] for msg in conversation_data["messages"] if msg.get("speaker") != "system"])
1312
- embeddings = self._get_embedding(full_text)
1313
-
1314
- # Create row data
1315
- row_data = {
1316
- 'company_id': profile.company_id,
1317
- 'company_name': profile.company_name,
1318
- 'product_name': profile.product_name,
1319
- 'product_type': profile.industry,
1320
- 'conversation_id': f"{profile.company_id}-conv-{conversation_idx}",
1321
- 'scenario': json.dumps(scenario),
1322
- 'conversation': json.dumps(conversation_data["messages"]),
1323
- 'full_text': full_text,
1324
- 'outcome': 1 if conversation_data["outcome"] else 0,
1325
- 'conversation_length': conversation_data["conversation_length"],
1326
- 'customer_engagement': conversation_data["customer_engagement_level"],
1327
- 'sales_effectiveness': conversation_data["sales_rep_effectiveness"],
1328
- 'probability_trajectory': json.dumps(conversation_data["conversion_probability_at_turn"]),
1329
- 'conversation_style': scenario.get("conversation_style", "direct_professional"),
1330
- 'conversation_flow': scenario.get("conversation_flow", "standard_linear"),
1331
- 'communication_channel': scenario.get("sales_channel", "email")
1332
- }
1333
-
1334
- # Add embeddings
1335
- for j, embed_value in enumerate(embeddings):
1336
- row_data[f'embedding_{j}'] = embed_value
1337
-
1338
- # Update counter
1339
- with self.total_counter_lock:
1340
- self.total_generated += 1
1341
- total = self.total_generated
1342
-
1343
- if total % 100 == 0:
1344
- logger.info(f"Generated {total} conversations so far")
1345
-
1346
- return row_data
1347
-
1348
- except Exception as e:
1349
- logger.error(f"Error generating conversation {conversation_idx} for profile {profile_idx}: {str(e)}")
1350
- return None
1351
-
1352
- def _worker(self, task_queue, result_batch_size=5):
1353
- """Worker function that processes tasks from the queue with immediate saving"""
1354
- batch = []
1355
-
1356
- while True:
1357
- try:
1358
- # Get task from queue with timeout
1359
- task = task_queue.get(timeout=5)
1360
-
1361
- # Check for termination signal
1362
- if task is None:
1363
- # Submit any remaining items in batch
1364
- if batch:
1365
- self.writer.write_rows(batch)
1366
- task_queue.task_done()
1367
- break
1368
-
1369
- # Add a random delay to stagger requests
1370
- time.sleep(random.uniform(0.1, 0.5))
1371
-
1372
- # Process the task
1373
- profile_idx, conv_idx = task
1374
- row_data = self._generate_full_conversation(profile_idx, conv_idx)
1375
-
1376
- if row_data:
1377
- batch.append(row_data)
1378
-
1379
- # Write batch when it reaches the threshold - use smaller batch size (5 instead of 10)
1380
- if len(batch) >= result_batch_size:
1381
- self.writer.write_rows(batch)
1382
- batch = [] # Clear batch after writing
1383
-
1384
- # Mark task as done
1385
- task_queue.task_done()
1386
-
1387
- except queue.Empty:
1388
- # Check if there are any items in the batch to write
1389
- if batch:
1390
- self.writer.write_rows(batch)
1391
- batch = []
1392
- continue
1393
- except Exception as e:
1394
- logger.error(f"Error in worker thread: {str(e)}")
1395
- try:
1396
- # Write any collected data before potentially crashing
1397
- if batch:
1398
- self.writer.write_rows(batch)
1399
- batch = []
1400
- task_queue.task_done()
1401
- except:
1402
- pass
1403
-
1404
- def generate_dataset(
1405
- self,
1406
- num_conversations: int = 100000,
1407
- num_profiles: int = 20,
1408
- output_path: str = "enhanced_saas_sales_conversations.csv",
1409
- num_threads: int = 25,
1410
- result_batch_size: int = 5
1411
- ) -> str:
1412
- """
1413
- Generate a complete dataset of diverse sales conversations using multithreading.
1414
-
1415
- Args:
1416
- num_conversations: Total number of conversations to generate
1417
- num_profiles: Number of unique SaaS profiles to use
1418
- output_path: Path to save the CSV dataset
1419
- num_threads: Number of worker threads to use
1420
- result_batch_size: Number of items to batch before writing to CSV
1421
-
1422
- Returns:
1423
- Path to the generated dataset
1424
- """
1425
- logger.info(f"Starting enhanced dataset generation: {num_conversations} conversations using {num_profiles} profiles with {num_threads} threads")
1426
-
1427
- start_time = time.time()
1428
-
1429
- # Generate SaaS profiles first (this is done in parallel already)
1430
- self.profiles = self.generate_saas_profiles(num_profiles)
1431
-
1432
- # Initialize counters
1433
- self.total_generated = 0
1434
- self.api_calls = 0
1435
- self.retry_count = 0
1436
- self.last_retry_time = 0
1437
-
1438
- # Define columns for the dataset
1439
- columns = ['company_id', 'company_name', 'product_name', 'product_type',
1440
- 'conversation_id', 'scenario', 'conversation', 'full_text',
1441
- 'outcome', 'conversation_length', 'customer_engagement',
1442
- 'sales_effectiveness', 'probability_trajectory',
1443
- 'conversation_style', 'conversation_flow', 'communication_channel']
1444
-
1445
- # Add embedding columns
1446
- for i in range(3072):
1447
- columns.append(f'embedding_{i}')
1448
-
1449
- # Initialize the writer
1450
- self.writer = ResultWriter(output_path, columns)
1451
-
1452
- # Create task queue and populate it
1453
- task_queue = queue.Queue()
1454
-
1455
- # Calculate conversations per profile
1456
- conversations_per_profile = num_conversations // len(self.profiles)
1457
- remaining = num_conversations % len(self.profiles)
1458
-
1459
- # Create tasks (profile_idx, conversation_idx) with more even distribution
1460
- for profile_idx in range(len(self.profiles)):
1461
- profile_conversations = conversations_per_profile
1462
- if profile_idx < remaining:
1463
- profile_conversations += 1
1464
-
1465
- for conv_idx in range(profile_conversations):
1466
- task_queue.put((profile_idx, conv_idx))
1467
-
1468
- # Calculate effective thread count based on rate limits
1469
- # Each conversation makes about 4 API calls (persona, scenario, conversation, embedding)
1470
- # We want to use only about 50% of the rate limit for better stability
1471
- requests_per_conversation = 4
1472
- requests_per_minute_per_thread = 10 # Conservative estimate
1473
- target_threads = (SAFE_RATE_LIMIT_RPM) / requests_per_minute_per_thread
1474
-
1475
- # Determine effective thread count
1476
- effective_threads = min(
1477
- num_threads, # User requested threads
1478
- int(target_threads), # Rate-limit-based threads
1479
- 30, # Hard limit for stability
1480
- task_queue.qsize() # No more threads than tasks
1481
- )
1482
-
1483
- logger.info(f"Using {effective_threads} threads based on rate limit of {RATE_LIMIT_RPM} RPM")
1484
-
1485
- # Start worker threads
1486
- workers = []
1487
- for _ in range(effective_threads):
1488
- worker = threading.Thread(target=self._worker, args=(task_queue, result_batch_size))
1489
- worker.daemon = True
1490
- worker.start()
1491
- workers.append(worker)
1492
-
1493
- # Progress indicator and statistics tracker
1494
- last_count = 0
1495
- last_stats_time = time.time()
1496
- with tqdm(total=num_conversations, desc="Generating conversations") as pbar:
1497
- while self.total_generated < num_conversations:
1498
- time.sleep(1) # Update progress every second
1499
-
1500
- with self.total_counter_lock:
1501
- current_count = self.total_generated
1502
-
1503
- # Update progress bar
1504
- delta = current_count - last_count
1505
- if delta > 0:
1506
- pbar.update(delta)
1507
- last_count = current_count
1508
-
1509
- # Print statistics every 60 seconds
1510
- now = time.time()
1511
- if now - last_stats_time > 60:
1512
- # Calculate API call rate
1513
- with self.api_call_lock:
1514
- api_calls = self.api_calls
1515
-
1516
- with self.retry_lock:
1517
- retries = self.retry_count
1518
-
1519
- elapsed = now - start_time
1520
- calls_per_minute = (api_calls / elapsed) * 60
1521
-
1522
- logger.info(f"Statistics - Generated: {current_count}, API calls: {api_calls} " +
1523
- f"({calls_per_minute:.1f}/min), Retries: {retries}")
1524
-
1525
- last_stats_time = now
1526
-
1527
- # Check if we've reached our target or if the queue is empty
1528
- if current_count >= num_conversations or task_queue.empty():
1529
- break
1530
-
1531
- # Signal workers to terminate
1532
- for _ in range(effective_threads):
1533
- task_queue.put(None)
1534
-
1535
- # Wait for all workers to finish (with timeout)
1536
- for worker in workers:
1537
- worker.join(timeout=30)
1538
-
1539
- end_time = time.time()
1540
- duration = end_time - start_time
1541
-
1542
- # Calculate final statistics
1543
- with self.api_call_lock:
1544
- total_api_calls = self.api_calls
1545
-
1546
- with self.retry_lock:
1547
- total_retries = self.retry_count
1548
-
1549
- logger.info(f"Dataset generation complete. Statistics:")
1550
- logger.info(f"- Total conversations: {self.total_generated}")
1551
- logger.info(f"- Total API calls: {total_api_calls}")
1552
- logger.info(f"- Total retries: {total_retries}")
1553
- logger.info(f"- Generation took {duration:.2f} seconds ({self.total_generated / duration:.2f} conversations/second)")
1554
- logger.info(f"- API call rate: {(total_api_calls / duration) * 60:.1f} calls/minute")
1555
-
1556
- return output_path
1557
-
1558
- def main():
1559
- """Main function to run the enhanced dataset generator."""
1560
- import argparse
1561
-
1562
- parser = argparse.ArgumentParser(description="Enhanced SaaS Sales Dataset Generator")
1563
- parser.add_argument("--num_conversations", type=int, default=100000,
1564
- help="Number of conversations to generate")
1565
- parser.add_argument("--num_profiles", type=int, default=20,
1566
- help="Number of SaaS profiles to generate")
1567
- parser.add_argument("--output_path", type=str, default="enhanced_saas_sales_conversations.csv",
1568
- help="Path to save the generated dataset")
1569
- parser.add_argument("--num_threads", type=int, default=25,
1570
- help="Number of worker threads to use (will be rate-limited)")
1571
- parser.add_argument("--rate_limit", type=int, default=2500,
1572
- help="API rate limit in requests per minute")
1573
- parser.add_argument("--batch_size", type=int, default=5,
1574
- help="Number of conversations to batch before writing to CSV")
1575
-
1576
- args = parser.parse_args()
1577
-
1578
- # Update rate limit if provided
1579
- global RATE_LIMIT_RPM, SAFE_RATE_LIMIT_RPM, RATE_LIMIT_RPS, MIN_REQUEST_INTERVAL
1580
- if args.rate_limit:
1581
- RATE_LIMIT_RPM = args.rate_limit
1582
- SAFE_RATE_LIMIT_RPM = int(RATE_LIMIT_RPM * 0.6)
1583
- RATE_LIMIT_RPS = SAFE_RATE_LIMIT_RPM / 60
1584
- MIN_REQUEST_INTERVAL = 1.0 / RATE_LIMIT_RPS
1585
-
1586
- # Initialize generator
1587
- generator = EnhancedSaaSDatasetGenerator()
1588
-
1589
- # Generate dataset
1590
- output_path = generator.generate_dataset(
1591
- num_conversations=args.num_conversations,
1592
- num_profiles=args.num_profiles,
1593
- output_path=args.output_path,
1594
- num_threads=args.num_threads,
1595
- result_batch_size=args.batch_size
1596
- )
1597
-
1598
- print(f"\nEnhanced dataset generation complete!")
1599
- print(f"Dataset saved to: {output_path}")
1600
-
1601
- if __name__ == "__main__":
1602
- main()
1603
- #python generate_dataset.py --num_conversations 100000 --num_profiles 20 --output_path custom_dataset.csv --num_threads 15 --rate_limit 2000 --batch_size 10