Delete generate_dataset.py
Browse files- generate_dataset.py +0 -1603
generate_dataset.py
DELETED
@@ -1,1603 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
from typing import List, Dict, Tuple, Optional, Any
|
6 |
-
import logging
|
7 |
-
import random
|
8 |
-
import time
|
9 |
-
from tqdm import tqdm
|
10 |
-
from openai import AzureOpenAI
|
11 |
-
from datetime import datetime
|
12 |
-
import concurrent.futures
|
13 |
-
import threading
|
14 |
-
from dataclasses import dataclass
|
15 |
-
import queue
|
16 |
-
import math
|
17 |
-
import re
|
18 |
-
|
19 |
-
# Configure logging
|
20 |
-
logging.basicConfig(
|
21 |
-
level=logging.INFO,
|
22 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
23 |
-
handlers=[
|
24 |
-
logging.FileHandler("sales_ai_system.log"),
|
25 |
-
logging.StreamHandler()
|
26 |
-
]
|
27 |
-
)
|
28 |
-
|
29 |
-
logger = logging.getLogger(__name__)
|
30 |
-
|
31 |
-
# Hard-coded Azure OpenAI credentials
|
32 |
-
AZURE_OPENAI_API_KEY =""
|
33 |
-
AZURE_OPENAI_DEPLOYMENT_NAME = ""
|
34 |
-
AZURE_OPENAI_ENDPOINT = "https://resource_name.openai.azure.com/"
|
35 |
-
AZURE_EMBEDDING_DEPLOYMENT_NAME = "text-embedding-3-large"
|
36 |
-
|
37 |
-
# Rate limiting parameters
|
38 |
-
RATE_LIMIT_RPM = 2500 # Requests per minute limit
|
39 |
-
# Use only 60% of the limit to account for retry overhead and be conservative
|
40 |
-
SAFE_RATE_LIMIT_RPM = int(RATE_LIMIT_RPM * 0.6)
|
41 |
-
RATE_LIMIT_RPS = SAFE_RATE_LIMIT_RPM / 60 # Requests per second
|
42 |
-
MIN_REQUEST_INTERVAL = 1.0 / RATE_LIMIT_RPS # Minimum interval between requests
|
43 |
-
|
44 |
-
# Thread-local storage for clients
|
45 |
-
local = threading.local()
|
46 |
-
|
47 |
-
# More granular rate limiters for different endpoints
|
48 |
-
class FixedWindowRateLimiter:
|
49 |
-
"""
|
50 |
-
Fixed window rate limiter that tracks requests in a sliding window.
|
51 |
-
More conservative than token bucket for API rate limits.
|
52 |
-
"""
|
53 |
-
def __init__(self, max_requests, window_size=60):
|
54 |
-
self.max_requests = max_requests
|
55 |
-
self.window_size = window_size # in seconds
|
56 |
-
self.request_timestamps = []
|
57 |
-
self.lock = threading.Lock()
|
58 |
-
|
59 |
-
def wait_if_needed(self):
|
60 |
-
"""Wait if the rate limit would be exceeded."""
|
61 |
-
with self.lock:
|
62 |
-
now = time.time()
|
63 |
-
|
64 |
-
# Remove timestamps outside the window
|
65 |
-
self.request_timestamps = [ts for ts in self.request_timestamps
|
66 |
-
if now - ts < self.window_size]
|
67 |
-
|
68 |
-
# Check if we're at the limit
|
69 |
-
if len(self.request_timestamps) >= self.max_requests:
|
70 |
-
# Calculate wait time - oldest timestamp will be removed after window_size
|
71 |
-
wait_time = self.window_size - (now - self.request_timestamps[0])
|
72 |
-
|
73 |
-
# Add a small jitter to avoid all threads waking up at the same time
|
74 |
-
wait_time = max(0.1, wait_time + random.uniform(0, 0.5))
|
75 |
-
|
76 |
-
return wait_time
|
77 |
-
|
78 |
-
# No need to wait
|
79 |
-
self.request_timestamps.append(now)
|
80 |
-
return 0
|
81 |
-
|
82 |
-
def record_request(self):
|
83 |
-
"""Record a request without waiting."""
|
84 |
-
with self.lock:
|
85 |
-
now = time.time()
|
86 |
-
self.request_timestamps.append(now)
|
87 |
-
|
88 |
-
# Create rate limiters
|
89 |
-
chat_limiter = FixedWindowRateLimiter(SAFE_RATE_LIMIT_RPM)
|
90 |
-
embedding_limiter = FixedWindowRateLimiter(SAFE_RATE_LIMIT_RPM)
|
91 |
-
|
92 |
-
@dataclass
|
93 |
-
class SaaSProfile:
|
94 |
-
"""Profile of a SaaS product."""
|
95 |
-
company_id: str
|
96 |
-
company_name: str
|
97 |
-
product_name: str
|
98 |
-
product_description: str
|
99 |
-
target_audience: List[str]
|
100 |
-
key_features: List[str]
|
101 |
-
value_propositions: List[str]
|
102 |
-
pricing_structure: Dict[str, Any]
|
103 |
-
common_objections: List[str]
|
104 |
-
industry: str
|
105 |
-
company_size: str # small, medium, large, enterprise
|
106 |
-
|
107 |
-
class ResultWriter:
|
108 |
-
"""Thread-safe writer for results to CSV"""
|
109 |
-
|
110 |
-
def __init__(self, output_path: str, columns: List[str]):
|
111 |
-
self.output_path = output_path
|
112 |
-
self.columns = columns
|
113 |
-
self.lock = threading.Lock()
|
114 |
-
|
115 |
-
# Create the file with headers if it doesn't exist
|
116 |
-
if not os.path.exists(output_path):
|
117 |
-
with open(output_path, 'w') as f:
|
118 |
-
f.write(','.join(columns) + '\n')
|
119 |
-
|
120 |
-
logger.info(f"Initialized ResultWriter for {output_path}")
|
121 |
-
|
122 |
-
def write_rows(self, rows: List[Dict]):
|
123 |
-
"""Write rows directly to the CSV file"""
|
124 |
-
if not rows:
|
125 |
-
return
|
126 |
-
|
127 |
-
try:
|
128 |
-
with self.lock:
|
129 |
-
with open(self.output_path, 'a') as f:
|
130 |
-
for row in rows:
|
131 |
-
# Convert values to strings and escape commas
|
132 |
-
csv_values = []
|
133 |
-
for col in self.columns:
|
134 |
-
val = str(row.get(col, ""))
|
135 |
-
# Escape double quotes by doubling them
|
136 |
-
val = val.replace('"', '""')
|
137 |
-
# Wrap in quotes
|
138 |
-
csv_values.append(f'"{val}"')
|
139 |
-
csv_line = ','.join(csv_values)
|
140 |
-
f.write(csv_line + '\n')
|
141 |
-
|
142 |
-
logger.debug(f"Wrote {len(rows)} rows to {self.output_path}")
|
143 |
-
except Exception as e:
|
144 |
-
logger.error(f"Error writing to CSV: {str(e)}")
|
145 |
-
|
146 |
-
class EnhancedSaaSDatasetGenerator:
|
147 |
-
"""
|
148 |
-
Generates diverse and realistic synthetic sales conversation datasets for SaaS companies
|
149 |
-
using Azure OpenAI with multithreading support.
|
150 |
-
"""
|
151 |
-
|
152 |
-
def __init__(self):
|
153 |
-
"""Initialize the dataset generator."""
|
154 |
-
self.profile_lock = threading.Lock()
|
155 |
-
self.profiles = None
|
156 |
-
self.writer = None
|
157 |
-
self.total_generated = 0
|
158 |
-
self.total_counter_lock = threading.Lock()
|
159 |
-
|
160 |
-
# Track API call statistics
|
161 |
-
self.api_calls = 0
|
162 |
-
self.api_call_lock = threading.Lock()
|
163 |
-
self.retry_count = 0
|
164 |
-
self.retry_lock = threading.Lock()
|
165 |
-
|
166 |
-
# Track last retry timestamp to prevent thundering herd
|
167 |
-
self.last_retry_time = 0
|
168 |
-
self.last_retry_lock = threading.Lock()
|
169 |
-
|
170 |
-
# Conversation style templates - define various styles to create diverse conversations
|
171 |
-
self.conversation_styles = [
|
172 |
-
"casual_friendly",
|
173 |
-
"direct_professional",
|
174 |
-
"technical_detailed",
|
175 |
-
"consultative_advisory",
|
176 |
-
"empathetic_supportive",
|
177 |
-
"skeptical_challenging",
|
178 |
-
"urgent_time_pressed",
|
179 |
-
"confused_overwhelmed",
|
180 |
-
"knowledgeable_assertive",
|
181 |
-
"storytelling_narrative"
|
182 |
-
]
|
183 |
-
|
184 |
-
# Communication channel templates with their unique characteristics
|
185 |
-
self.communication_channels = {
|
186 |
-
"email": {
|
187 |
-
"formality": "high",
|
188 |
-
"response_time": "delayed",
|
189 |
-
"message_length": "medium to long",
|
190 |
-
"format_elements": ["subject lines", "signatures", "quoted replies"]
|
191 |
-
},
|
192 |
-
"live_chat": {
|
193 |
-
"formality": "low to medium",
|
194 |
-
"response_time": "immediate",
|
195 |
-
"message_length": "short to medium",
|
196 |
-
"format_elements": ["quick responses", "emojis", "typing indicators"]
|
197 |
-
},
|
198 |
-
"phone_call": {
|
199 |
-
"formality": "medium",
|
200 |
-
"response_time": "immediate",
|
201 |
-
"message_length": "conversational",
|
202 |
-
"format_elements": ["verbal pauses", "interruptions", "voice tone indicators"]
|
203 |
-
},
|
204 |
-
"video_call": {
|
205 |
-
"formality": "medium",
|
206 |
-
"response_time": "immediate",
|
207 |
-
"message_length": "medium",
|
208 |
-
"format_elements": ["screen sharing references", "visual cues", "environment mentions"]
|
209 |
-
},
|
210 |
-
"in_person": {
|
211 |
-
"formality": "varies",
|
212 |
-
"response_time": "immediate",
|
213 |
-
"message_length": "varies",
|
214 |
-
"format_elements": ["environment references", "body language cues", "material handouts"]
|
215 |
-
},
|
216 |
-
"sms": {
|
217 |
-
"formality": "low",
|
218 |
-
"response_time": "varies",
|
219 |
-
"message_length": "very short",
|
220 |
-
"format_elements": ["abbreviations", "emojis", "brief statements"]
|
221 |
-
},
|
222 |
-
"social_media": {
|
223 |
-
"formality": "low to medium",
|
224 |
-
"response_time": "varies",
|
225 |
-
"message_length": "short",
|
226 |
-
"format_elements": ["hashtags", "mentions", "public/private context references"]
|
227 |
-
}
|
228 |
-
}
|
229 |
-
|
230 |
-
# Customer personas templates with more diverse traits
|
231 |
-
self.persona_templates = [
|
232 |
-
{
|
233 |
-
"name": "Time-Pressed Executive",
|
234 |
-
"traits": ["direct", "value-focused", "impatient", "decisive"],
|
235 |
-
"communication_style": "brief and to-the-point, may use truncated sentences and check messages between meetings",
|
236 |
-
"typical_objections": ["too time-consuming", "prove ROI quickly", "competitor comparisons"]
|
237 |
-
},
|
238 |
-
{
|
239 |
-
"name": "Technical Evaluator",
|
240 |
-
"traits": ["detail-oriented", "skeptical", "analytical", "research-driven"],
|
241 |
-
"communication_style": "asks specific technical questions, uses industry jargon, references research",
|
242 |
-
"typical_objections": ["technical limitations", "integration concerns", "security issues"]
|
243 |
-
},
|
244 |
-
{
|
245 |
-
"name": "Budget-Conscious Manager",
|
246 |
-
"traits": ["price-sensitive", "cautious", "ROI-focused", "deliberate"],
|
247 |
-
"communication_style": "frequently mentions costs, compares alternatives, asks about discounts",
|
248 |
-
"typical_objections": ["too expensive", "budget constraints", "not worth the investment"]
|
249 |
-
},
|
250 |
-
{
|
251 |
-
"name": "Relationship Builder",
|
252 |
-
"traits": ["conversational", "personable", "story-driven", "trust-focused"],
|
253 |
-
"communication_style": "shares personal anecdotes, asks about the sales rep, builds rapport before business",
|
254 |
-
"typical_objections": ["need to build trust", "want references", "need team buy-in"]
|
255 |
-
},
|
256 |
-
{
|
257 |
-
"name": "Innovation Seeker",
|
258 |
-
"traits": ["trend-aware", "competitive", "growth-focused", "risk-tolerant"],
|
259 |
-
"communication_style": "references industry trends, talks about growth goals, explores cutting-edge features",
|
260 |
-
"typical_objections": ["not innovative enough", "will soon be outdated", "competitive advantage concerns"]
|
261 |
-
},
|
262 |
-
{
|
263 |
-
"name": "Overwhelmed User",
|
264 |
-
"traits": ["stressed", "confused", "seeking guidance", "time-constrained"],
|
265 |
-
"communication_style": "asks many basic questions, may seem scattered, expresses feeling overwhelmed",
|
266 |
-
"typical_objections": ["too complicated", "training requirements", "implementation time"]
|
267 |
-
},
|
268 |
-
{
|
269 |
-
"name": "Delegated Researcher",
|
270 |
-
"traits": ["information-gathering", "non-decision-maker", "thorough", "process-oriented"],
|
271 |
-
"communication_style": "mentions reporting back to others, asks for materials, follows structured evaluation",
|
272 |
-
"typical_objections": ["need to consult others", "gathering information only", "complex approval process"]
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"name": "Competitor User",
|
276 |
-
"traits": ["comparative", "experienced", "specific needs", "solution-aware"],
|
277 |
-
"communication_style": "frequently mentions current solution, asks about specific differences, uses competitor terminology",
|
278 |
-
"typical_objections": ["switching costs", "feature parity", "disruption concerns"]
|
279 |
-
},
|
280 |
-
{
|
281 |
-
"name": "Enthusiastic Champion",
|
282 |
-
"traits": ["excited", "vision-aligned", "quick to connect", "internal seller"],
|
283 |
-
"communication_style": "expresses excitement, talks about company vision, discusses internal advocacy",
|
284 |
-
"typical_objections": ["need help convincing others", "implementation support", "proving value to team"]
|
285 |
-
},
|
286 |
-
{
|
287 |
-
"name": "Resistant Stakeholder",
|
288 |
-
"traits": ["change-averse", "skeptical", "security-focused", "process-oriented"],
|
289 |
-
"communication_style": "questions necessity, raises potential problems, defensive about current solutions",
|
290 |
-
"typical_objections": ["disruption to workflow", "employee resistance", "security concerns"]
|
291 |
-
}
|
292 |
-
]
|
293 |
-
|
294 |
-
# Conversation flow patterns to create non-linear, realistic conversations
|
295 |
-
self.conversation_flows = [
|
296 |
-
"standard_linear", # Traditional linear sales conversation
|
297 |
-
"multiple_objection_loops", # Customer raises several objections that must be addressed
|
298 |
-
"subject_switching", # Conversation jumps between different topics
|
299 |
-
"interrupted_followup", # Conversation gets interrupted and resumes later
|
300 |
-
"technical_deep_dive", # Detailed exploration of technical aspects
|
301 |
-
"competitive_comparison", # Heavy focus on comparing with competitors
|
302 |
-
"gradual_discovery", # Slow revelation of needs throughout conversation
|
303 |
-
"immediate_interest", # Customer shows high interest from the beginning
|
304 |
-
"initial_rejection", # Starts negative but potentially turns around
|
305 |
-
"stakeholder_expansion", # Involves bringing in additional decision makers
|
306 |
-
"pricing_negotiation", # Extended discussion about pricing and terms
|
307 |
-
"implementation_concerns", # Focused on implementation challenges
|
308 |
-
"value_justification", # Customer needs convincing on ROI
|
309 |
-
"relationship_building", # Heavy on personal connection before business
|
310 |
-
"multi_session", # Simulates a conversation occurring across multiple contacts
|
311 |
-
"demo_walkthrough" # Simulates a product demonstration conversation
|
312 |
-
]
|
313 |
-
|
314 |
-
# Speech patterns and quirks to make conversations more human-like
|
315 |
-
self.speech_patterns = [
|
316 |
-
# Hesitations and fillers
|
317 |
-
{"pattern": "filler_words", "examples": ["um", "uh", "like", "you know", "actually", "basically", "I mean"]},
|
318 |
-
|
319 |
-
# Grammatical quirks
|
320 |
-
{"pattern": "run_on_sentences", "examples": ["and then we also", "plus we need to", "which also means"]},
|
321 |
-
{"pattern": "self_corrections", "examples": ["I mean", "what I meant was", "actually, let me rephrase", "sorry, what I'm trying to say"]},
|
322 |
-
|
323 |
-
# Typing variations (for written channels)
|
324 |
-
{"pattern": "typos", "examples": ["teh", "adn", "waht", "thigns", "compnay", "prodcut", "featuers"]},
|
325 |
-
{"pattern": "autocorrections", "examples": ["Our team is looking for skeletons (solutions)", "We need better coffin (conferencing)"]},
|
326 |
-
|
327 |
-
# Regional expressions
|
328 |
-
{"pattern": "regionalisms", "examples": ["y'all", "folks", "brilliant", "cheers", "no worries", "wicked", "proper"]},
|
329 |
-
|
330 |
-
# Punctuation habits
|
331 |
-
{"pattern": "over_punctuation", "examples": ["!!!", "???", "..."]},
|
332 |
-
{"pattern": "under_punctuation", "examples": ["no periods", "run on thoughts", "missing question marks"]},
|
333 |
-
|
334 |
-
# Message structure
|
335 |
-
{"pattern": "fragmented_thoughts", "examples": ["Need to check on...", "Not sure if...", "Let me think...", "One more thing."]},
|
336 |
-
{"pattern": "tangents", "examples": ["By the way", "Oh that reminds me", "Not related, but", "Random thought"]},
|
337 |
-
|
338 |
-
# Emphasis patterns
|
339 |
-
{"pattern": "emphasis_capital", "examples": ["REALLY", "VERY", "NEVER", "ALWAYS", "MUST"]},
|
340 |
-
{"pattern": "emphasis_repetition", "examples": ["very very", "really really", "many many"]}
|
341 |
-
]
|
342 |
-
|
343 |
-
# Customer needs categories with specific language patterns
|
344 |
-
self.customer_needs = [
|
345 |
-
{"type": "efficiency", "keywords": ["faster", "streamline", "automate", "time-consuming", "manual", "process", "workflow"]},
|
346 |
-
{"type": "cost_reduction", "keywords": ["expenses", "budget", "save money", "affordable", "cost-effective", "ROI", "investment"]},
|
347 |
-
{"type": "growth", "keywords": ["scale", "expand", "increase revenue", "market share", "competitive", "opportunity", "growth"]},
|
348 |
-
{"type": "compliance", "keywords": ["regulations", "requirements", "standards", "audit", "legal", "compliance", "risk"]},
|
349 |
-
{"type": "integration", "keywords": ["connect", "compatible", "ecosystem", "work with", "existing systems", "API", "integration"]},
|
350 |
-
{"type": "usability", "keywords": ["easy to use", "intuitive", "learning curve", "training", "user-friendly", "simple", "interface"]},
|
351 |
-
{"type": "reliability", "keywords": ["uptime", "stable", "dependable", "trust", "consistent", "failover", "backup"]},
|
352 |
-
{"type": "security", "keywords": ["protect", "data security", "encryption", "sensitive information", "breach", "privacy", "secure"]},
|
353 |
-
{"type": "support", "keywords": ["help", "customer service", "response time", "training", "documentation", "support team", "assistance"]},
|
354 |
-
{"type": "analytics", "keywords": ["insights", "reporting", "dashboard", "metrics", "data", "visibility", "analytics"]}
|
355 |
-
]
|
356 |
-
|
357 |
-
logger.info("Initialized EnhancedSaaSDatasetGenerator with diverse conversation templates")
|
358 |
-
|
359 |
-
def get_openai_client(self):
|
360 |
-
"""Get thread-local Azure OpenAI client"""
|
361 |
-
if not hasattr(local, 'client'):
|
362 |
-
local.client = AzureOpenAI(
|
363 |
-
api_key=AZURE_OPENAI_API_KEY,
|
364 |
-
api_version="2023-05-15",
|
365 |
-
azure_endpoint=AZURE_OPENAI_ENDPOINT
|
366 |
-
)
|
367 |
-
return local.client
|
368 |
-
|
369 |
-
def _wait_with_jitter(self, base_time):
|
370 |
-
"""Wait with jitter to avoid thundering herd problem"""
|
371 |
-
jitter = random.uniform(0, 1)
|
372 |
-
wait_time = base_time + jitter
|
373 |
-
time.sleep(wait_time)
|
374 |
-
|
375 |
-
def _handle_rate_limit(self, retry_after=None):
|
376 |
-
"""Handle rate limit exceptions with proper backoff"""
|
377 |
-
with self.retry_lock:
|
378 |
-
self.retry_count += 1
|
379 |
-
|
380 |
-
# If retry_after is provided in header, use it; otherwise use default
|
381 |
-
wait_time = retry_after if retry_after else 30
|
382 |
-
|
383 |
-
# Add jitter to avoid thundering herd problem
|
384 |
-
jitter = random.uniform(0, 5)
|
385 |
-
wait_time += jitter
|
386 |
-
|
387 |
-
# Update last retry time - all threads can see when the last retry happened
|
388 |
-
with self.last_retry_lock:
|
389 |
-
self.last_retry_time = time.time()
|
390 |
-
|
391 |
-
logger.warning(f"Rate limit exceeded. Waiting for {wait_time:.2f} seconds before retry.")
|
392 |
-
time.sleep(wait_time)
|
393 |
-
|
394 |
-
def _get_embedding(self, text: str) -> List[float]:
|
395 |
-
"""Get embeddings using Azure OpenAI."""
|
396 |
-
max_retries = 5
|
397 |
-
|
398 |
-
for attempt in range(max_retries):
|
399 |
-
try:
|
400 |
-
# Check if we need to wait based on embedding rate limiter
|
401 |
-
wait_time = embedding_limiter.wait_if_needed()
|
402 |
-
if wait_time > 0:
|
403 |
-
time.sleep(wait_time)
|
404 |
-
|
405 |
-
# Check if any thread recently hit a rate limit
|
406 |
-
with self.last_retry_lock:
|
407 |
-
time_since_last_retry = time.time() - self.last_retry_time
|
408 |
-
|
409 |
-
# If a retry happened recently, stagger our requests
|
410 |
-
if time_since_last_retry < 10:
|
411 |
-
time.sleep(random.uniform(0.5, 3.0))
|
412 |
-
|
413 |
-
client = self.get_openai_client()
|
414 |
-
response = client.embeddings.create(
|
415 |
-
model=AZURE_EMBEDDING_DEPLOYMENT_NAME,
|
416 |
-
input=text
|
417 |
-
)
|
418 |
-
|
419 |
-
# Track successful API call
|
420 |
-
with self.api_call_lock:
|
421 |
-
self.api_calls += 1
|
422 |
-
|
423 |
-
return response.data[0].embedding
|
424 |
-
|
425 |
-
except Exception as e:
|
426 |
-
error_msg = str(e).lower()
|
427 |
-
|
428 |
-
# Handle rate limit errors
|
429 |
-
if "429" in error_msg or "too many requests" in error_msg:
|
430 |
-
self._handle_rate_limit()
|
431 |
-
continue
|
432 |
-
|
433 |
-
# Log other errors
|
434 |
-
logger.error(f"Error attempt {attempt+1}/{max_retries} getting embedding: {str(e)}")
|
435 |
-
|
436 |
-
if attempt < max_retries - 1:
|
437 |
-
# Exponential backoff with jitter
|
438 |
-
backoff_time = (2 ** attempt) + random.uniform(0, 1)
|
439 |
-
time.sleep(backoff_time)
|
440 |
-
else:
|
441 |
-
logger.error(f"Failed to get embedding after {max_retries} attempts")
|
442 |
-
return [0.0] * 3072 # Default dimension for embeddings
|
443 |
-
|
444 |
-
def _generate_completion(self, system_prompt: str, user_prompt: str, temperature: float = 0.7, retries: int = 5) -> str:
|
445 |
-
"""Generate text completion using Azure OpenAI with improved error handling."""
|
446 |
-
client = self.get_openai_client()
|
447 |
-
|
448 |
-
for attempt in range(retries):
|
449 |
-
try:
|
450 |
-
# Check if we need to wait based on chat rate limiter
|
451 |
-
wait_time = chat_limiter.wait_if_needed()
|
452 |
-
if wait_time > 0:
|
453 |
-
time.sleep(wait_time)
|
454 |
-
|
455 |
-
# Check if any thread recently hit a rate limit
|
456 |
-
with self.last_retry_lock:
|
457 |
-
time_since_last_retry = time.time() - self.last_retry_time
|
458 |
-
|
459 |
-
# If a retry happened recently, stagger our requests
|
460 |
-
if time_since_last_retry < 10:
|
461 |
-
time.sleep(random.uniform(0.5, 3.0))
|
462 |
-
|
463 |
-
# Add explicit JSON formatting request to the system prompt
|
464 |
-
enhanced_system_prompt = f"{system_prompt}\nImportant: Your response must be valid JSON only, with no explanations or additional text."
|
465 |
-
|
466 |
-
# Add explicit JSON formatting instructions to the user prompt
|
467 |
-
enhanced_user_prompt = f"{user_prompt}\n\nYour response should be formatted as valid JSON only. Do not include any text before or after the JSON."
|
468 |
-
|
469 |
-
response = client.chat.completions.create(
|
470 |
-
model=AZURE_OPENAI_DEPLOYMENT_NAME,
|
471 |
-
messages=[
|
472 |
-
{"role": "system", "content": enhanced_system_prompt},
|
473 |
-
{"role": "user", "content": enhanced_user_prompt}
|
474 |
-
],
|
475 |
-
temperature=temperature
|
476 |
-
)
|
477 |
-
|
478 |
-
# Track successful API call
|
479 |
-
with self.api_call_lock:
|
480 |
-
self.api_calls += 1
|
481 |
-
|
482 |
-
content = response.choices[0].message.content.strip()
|
483 |
-
|
484 |
-
# Remove any potential non-JSON content before and after the actual JSON
|
485 |
-
if content.startswith("```json"):
|
486 |
-
content = content.split("```json", 1)[1]
|
487 |
-
if content.endswith("```"):
|
488 |
-
content = content.rsplit("```", 1)[0]
|
489 |
-
|
490 |
-
# Further cleanup to ensure we have valid JSON
|
491 |
-
content = content.strip()
|
492 |
-
|
493 |
-
# Check if the first character is not '{' but contains '{' somewhere
|
494 |
-
if not content.startswith('{') and '{' in content:
|
495 |
-
content = content[content.find('{'):]
|
496 |
-
|
497 |
-
# Check if the last character is not '}' but contains '}' somewhere
|
498 |
-
if not content.endswith('}') and '}' in content:
|
499 |
-
content = content[:content.rfind('}')+1]
|
500 |
-
|
501 |
-
try:
|
502 |
-
# Parse and re-serialize to ensure valid JSON
|
503 |
-
parsed_json = json.loads(content)
|
504 |
-
return json.dumps(parsed_json)
|
505 |
-
except json.JSONDecodeError:
|
506 |
-
# If we can't parse the JSON, try to fix common issues
|
507 |
-
# Replace single quotes with double quotes
|
508 |
-
content = content.replace("'", '"')
|
509 |
-
# Fix unquoted keys
|
510 |
-
content = re.sub(r'(\s*?)(\w+)(\s*?):', r'\1"\2"\3:', content)
|
511 |
-
try:
|
512 |
-
parsed_json = json.loads(content)
|
513 |
-
return json.dumps(parsed_json)
|
514 |
-
except json.JSONDecodeError:
|
515 |
-
if attempt < retries - 1:
|
516 |
-
continue
|
517 |
-
else:
|
518 |
-
# Create minimal valid JSON as fallback
|
519 |
-
logger.warning("Returning fallback JSON due to parsing error")
|
520 |
-
return '{"error": "Could not generate valid JSON", "partial_content": "Content generation failed"}'
|
521 |
-
|
522 |
-
except Exception as e:
|
523 |
-
error_msg = str(e).lower()
|
524 |
-
|
525 |
-
# Handle rate limit errors
|
526 |
-
if "429" in error_msg or "too many requests" in error_msg:
|
527 |
-
self._handle_rate_limit()
|
528 |
-
continue
|
529 |
-
|
530 |
-
# Log other errors
|
531 |
-
logger.error(f"Error attempt {attempt+1}/{retries} generating completion: {str(e)}")
|
532 |
-
|
533 |
-
if attempt < retries - 1:
|
534 |
-
# Exponential backoff with jitter
|
535 |
-
backoff_time = (2 ** attempt) + random.uniform(0, 1)
|
536 |
-
time.sleep(backoff_time)
|
537 |
-
else:
|
538 |
-
logger.error(f"Failed to generate completion after {retries} attempts")
|
539 |
-
# Return a minimal valid JSON as fallback
|
540 |
-
return '{"error": "Failed to generate completion", "message": "Maximum retries exceeded"}'
|
541 |
-
|
542 |
-
def generate_saas_profiles(self, num_profiles: int = 10) -> List[SaaSProfile]:
|
543 |
-
"""Generate a diverse set of SaaS company profiles with improved error handling."""
|
544 |
-
|
545 |
-
profiles = []
|
546 |
-
|
547 |
-
# Expanded SaaS categories with modern AI/ML and other specialized categories
|
548 |
-
saas_categories = [
|
549 |
-
# Core SaaS Categories
|
550 |
-
"Project Management", "CRM", "Marketing Automation", "HR Software",
|
551 |
-
"Customer Support", "Accounting", "Business Intelligence", "Collaboration",
|
552 |
-
"DevOps", "Security", "E-commerce", "ERP", "Content Management",
|
553 |
-
|
554 |
-
# AI/ML/LLM Specific
|
555 |
-
"LLM Development Platform", "AI Orchestration", "Prompt Engineering Tools",
|
556 |
-
"AI Agent Framework", "Machine Learning Operations", "Vector Database",
|
557 |
-
"AI Content Generation", "Computer Vision Platform", "NLP Solutions",
|
558 |
-
"AI Model Marketplace", "Semantic Search", "AI Development Environment",
|
559 |
-
"Multimodal AI Platform", "AI Workflow Automation", "GenAI Enterprise Solutions",
|
560 |
-
|
561 |
-
# Emerging Tech SaaS
|
562 |
-
"Blockchain Services", "IoT Platform", "Augmented Reality", "Virtual Reality",
|
563 |
-
"Edge Computing", "Quantum Computing Services", "Digital Twin Platform",
|
564 |
-
|
565 |
-
# Industry-Specific SaaS
|
566 |
-
"HealthTech", "FinTech", "EdTech", "LegalTech", "PropTech", "AgriTech",
|
567 |
-
"InsurTech", "RegTech", "CleanTech", "BioTech", "FoodTech", "RetailTech",
|
568 |
-
|
569 |
-
# Data-Focused SaaS
|
570 |
-
"Data Integration", "ETL Platform", "Data Visualization", "Data Governance",
|
571 |
-
"Big Data Analytics", "Predictive Analytics", "Data Labeling", "Data Quality",
|
572 |
-
"Real-time Analytics", "Data Pipeline", "Time Series Database",
|
573 |
-
|
574 |
-
# Specialized SaaS
|
575 |
-
"API Management", "Workflow Automation", "Knowledge Management", "Network Monitoring",
|
576 |
-
"Identity Management", "Email Marketing", "Video Conferencing", "Product Analytics",
|
577 |
-
"Customer Data Platform", "Event Management", "Subscription Management",
|
578 |
-
"Conversational AI", "Pricing Optimization", "Sales Enablement", "Revenue Operations",
|
579 |
-
|
580 |
-
# Developer Tools
|
581 |
-
"Code Repository", "CI/CD Pipeline", "Testing Automation", "Microservices Platform",
|
582 |
-
"Serverless Computing", "API Development", "Low-Code Platform", "No-Code Platform",
|
583 |
-
"Database Management", "Container Orchestration", "Application Monitoring",
|
584 |
-
|
585 |
-
# Security SaaS
|
586 |
-
"Endpoint Protection", "Cloud Security", "Identity Access Management",
|
587 |
-
"Vulnerability Management", "Threat Intelligence", "Data Loss Prevention",
|
588 |
-
"Security Information Management", "Privileged Access Management", "Zero Trust Security",
|
589 |
-
|
590 |
-
# Remote Work SaaS
|
591 |
-
"Virtual Desktop", "Remote Team Collaboration", "Digital Workplace", "Employee Monitoring",
|
592 |
-
"Virtual Onboarding", "Distributed Team Management", "Workforce Analytics"
|
593 |
-
]
|
594 |
-
|
595 |
-
# Expanded industries list to match the diverse SaaS categories
|
596 |
-
industries = [
|
597 |
-
# Traditional Industries
|
598 |
-
"Technology", "Healthcare", "Finance", "Education", "Retail",
|
599 |
-
"Manufacturing", "Media", "Real Estate", "Legal", "Non-profit",
|
600 |
-
|
601 |
-
# Expanded Technology Sectors
|
602 |
-
"Software Development", "Cloud Services", "Data Science", "Artificial Intelligence",
|
603 |
-
"Cybersecurity", "Telecommunications", "Gaming", "Digital Marketing",
|
604 |
-
|
605 |
-
# Specific Verticals
|
606 |
-
"E-commerce", "Banking", "Insurance", "Pharmaceuticals", "Entertainment",
|
607 |
-
"Hospitality", "Transportation", "Logistics", "Construction", "Energy",
|
608 |
-
"Agriculture", "Automotive", "Aerospace", "Public Sector", "Professional Services",
|
609 |
-
|
610 |
-
# Emerging Industries
|
611 |
-
"Renewable Energy", "Biotechnology", "Nanotechnology", "Space Technology",
|
612 |
-
"Smart Cities", "Sustainable Development", "Circular Economy",
|
613 |
-
|
614 |
-
# Service Sectors
|
615 |
-
"Consulting", "Staffing", "Training & Development", "Research", "Marketing Services"
|
616 |
-
]
|
617 |
-
|
618 |
-
company_sizes = ["small", "medium", "large", "enterprise"]
|
619 |
-
|
620 |
-
# Calculate effective thread count - be conservative for profile generation
|
621 |
-
effective_threads = min(num_profiles, 15)
|
622 |
-
|
623 |
-
# Use ThreadPoolExecutor for parallel profile generation
|
624 |
-
with concurrent.futures.ThreadPoolExecutor(max_workers=effective_threads) as executor:
|
625 |
-
futures = []
|
626 |
-
|
627 |
-
# Submit each profile generation task
|
628 |
-
for i in range(num_profiles):
|
629 |
-
category = random.choice(saas_categories)
|
630 |
-
industry = random.choice(industries)
|
631 |
-
size = random.choice(company_sizes)
|
632 |
-
|
633 |
-
futures.append(executor.submit(
|
634 |
-
self._generate_single_profile, i, category, industry, size
|
635 |
-
))
|
636 |
-
|
637 |
-
# Collect results as they complete
|
638 |
-
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Generating SaaS profiles"):
|
639 |
-
try:
|
640 |
-
profile = future.result()
|
641 |
-
if profile:
|
642 |
-
profiles.append(profile)
|
643 |
-
except Exception as e:
|
644 |
-
logger.error(f"Error in profile generation thread: {str(e)}")
|
645 |
-
|
646 |
-
logger.info(f"Generated {len(profiles)} SaaS profiles")
|
647 |
-
return profiles
|
648 |
-
|
649 |
-
def _generate_single_profile(self, i: int, category: str, industry: str, size: str) -> Optional[SaaSProfile]:
|
650 |
-
"""Generate a single SaaS profile."""
|
651 |
-
max_retries = 3
|
652 |
-
for attempt in range(max_retries):
|
653 |
-
try:
|
654 |
-
# Use a simpler prompt focused on just creating valid JSON
|
655 |
-
system_prompt = "You are a SaaS industry expert. Generate a JSON object according to the specification."
|
656 |
-
|
657 |
-
user_prompt = f"""
|
658 |
-
Create a SaaS company profile for a {category} software company targeting {size} businesses in the {industry} industry.
|
659 |
-
|
660 |
-
Return ONLY a JSON object with this exact structure:
|
661 |
-
{{
|
662 |
-
"company_id": "saas-{i}",
|
663 |
-
"company_name": "Company name",
|
664 |
-
"product_name": "Product name",
|
665 |
-
"product_description": "A 2-3 sentence description",
|
666 |
-
"target_audience": ["Target 1", "Target 2", "Target 3"],
|
667 |
-
"key_features": ["Feature 1", "Feature 2", "Feature 3", "Feature 4"],
|
668 |
-
"value_propositions": ["Value prop 1", "Value prop 2", "Value prop 3"],
|
669 |
-
"pricing_structure": {{
|
670 |
-
"model": "Pricing model type",
|
671 |
-
"tiers": [
|
672 |
-
{{
|
673 |
-
"name": "Tier name",
|
674 |
-
"price": "Price",
|
675 |
-
"features": ["Feature 1", "Feature 2"]
|
676 |
-
}}
|
677 |
-
]
|
678 |
-
}},
|
679 |
-
"common_objections": ["Objection 1", "Objection 2", "Objection 3", "Objection 4"],
|
680 |
-
"industry": "{industry}",
|
681 |
-
"company_size": "{size}"
|
682 |
-
}}
|
683 |
-
|
684 |
-
Ensure your response is ONLY valid JSON with no additional text, markdown code blocks, or explanations.
|
685 |
-
"""
|
686 |
-
|
687 |
-
content = self._generate_completion(system_prompt, user_prompt)
|
688 |
-
profile_json = json.loads(content)
|
689 |
-
|
690 |
-
profile = SaaSProfile(
|
691 |
-
company_id=profile_json.get("company_id", f"saas-{i}"),
|
692 |
-
company_name=profile_json["company_name"],
|
693 |
-
product_name=profile_json["product_name"],
|
694 |
-
product_description=profile_json["product_description"],
|
695 |
-
target_audience=profile_json["target_audience"],
|
696 |
-
key_features=profile_json["key_features"],
|
697 |
-
value_propositions=profile_json["value_propositions"],
|
698 |
-
pricing_structure=profile_json["pricing_structure"],
|
699 |
-
common_objections=profile_json["common_objections"],
|
700 |
-
industry=profile_json["industry"],
|
701 |
-
company_size=profile_json["company_size"]
|
702 |
-
)
|
703 |
-
|
704 |
-
logger.info(f"Successfully generated profile {i}: {profile.company_name}")
|
705 |
-
return profile
|
706 |
-
|
707 |
-
except Exception as e:
|
708 |
-
logger.error(f"Error attempt {attempt+1}/{max_retries} generating profile {i}: {str(e)}")
|
709 |
-
if attempt < max_retries - 1:
|
710 |
-
# Exponential backoff
|
711 |
-
backoff_time = (2 ** attempt) + random.uniform(0, 1)
|
712 |
-
time.sleep(backoff_time)
|
713 |
-
|
714 |
-
# Create a fallback profile on final attempt
|
715 |
-
logger.warning(f"Using fallback profile for {i}")
|
716 |
-
return SaaSProfile(
|
717 |
-
company_id=f"saas-{i}",
|
718 |
-
company_name=f"{category} Solutions Inc",
|
719 |
-
product_name=f"{category} Pro",
|
720 |
-
product_description=f"A {category} solution for {size} businesses in the {industry} industry.",
|
721 |
-
target_audience=[f"{industry} professionals", f"{size} businesses", "Department managers"],
|
722 |
-
key_features=["Easy setup", "Intuitive interface", "Advanced reporting", "Team collaboration"],
|
723 |
-
value_propositions=["Increase productivity", "Reduce costs", "Improve visibility"],
|
724 |
-
pricing_structure={
|
725 |
-
"model": "tiered",
|
726 |
-
"tiers": [
|
727 |
-
{
|
728 |
-
"name": "Basic",
|
729 |
-
"price": "$10/user/month",
|
730 |
-
"features": ["Core features", "Email support"]
|
731 |
-
}
|
732 |
-
]
|
733 |
-
},
|
734 |
-
common_objections=["Too expensive", "Complex implementation", "Training required", "Integration concerns"],
|
735 |
-
industry=industry,
|
736 |
-
company_size=size
|
737 |
-
)
|
738 |
-
|
739 |
-
def _generate_customer_persona(self, profile: SaaSProfile) -> Dict:
|
740 |
-
"""Generate a realistic customer persona based on the SaaS profile with improved diversity."""
|
741 |
-
max_retries = 3
|
742 |
-
for attempt in range(max_retries):
|
743 |
-
try:
|
744 |
-
# Select a random persona template for more diversity
|
745 |
-
persona_template = random.choice(self.persona_templates)
|
746 |
-
|
747 |
-
system_prompt = """You are an expert in creating realistic customer personas.
|
748 |
-
Generate a JSON object according to the specification. Make the persona feel real, with specific challenges and needs."""
|
749 |
-
|
750 |
-
user_prompt = f"""
|
751 |
-
Generate a realistic customer persona for a potential {profile.product_name} customer based on:
|
752 |
-
|
753 |
-
Company: {profile.company_name}
|
754 |
-
Product: {profile.product_name}
|
755 |
-
Description: {profile.product_description}
|
756 |
-
Target Audience: {", ".join(profile.target_audience)}
|
757 |
-
Industry: {profile.industry}
|
758 |
-
|
759 |
-
Please base this persona loosely on the following template:
|
760 |
-
Template name: {persona_template["name"]}
|
761 |
-
Traits: {", ".join(persona_template["traits"])}
|
762 |
-
Communication style: {persona_template["communication_style"]}
|
763 |
-
Typical objections: {", ".join(persona_template["typical_objections"])}
|
764 |
-
|
765 |
-
Return ONLY a JSON object with this exact structure:
|
766 |
-
{{
|
767 |
-
"name": "Full customer name (realistic)",
|
768 |
-
"company": "Customer's company name (specific, not generic)",
|
769 |
-
"role": "Customer's specific job title",
|
770 |
-
"company_size": "{profile.company_size}",
|
771 |
-
"industry": "{profile.industry}",
|
772 |
-
"pain_points": ["Specific pain point 1", "Specific pain point 2", "Specific pain point 3"],
|
773 |
-
"needs": ["Specific need 1", "Specific need 2", "Specific need 3"],
|
774 |
-
"communication_preferences": ["Email", "Phone", "Chat", etc.],
|
775 |
-
"technical_expertise": "low/medium/high",
|
776 |
-
"budget_sensitivity": "low/medium/high",
|
777 |
-
"decision_making_authority": "none/influence/decide",
|
778 |
-
"personality_traits": ["Trait 1", "Trait 2", "Trait 3"],
|
779 |
-
"background": "Brief background of the customer (2-3 sentences)",
|
780 |
-
"objection_style": "How they typically raise objections (direct, passive, etc.)"
|
781 |
-
}}
|
782 |
-
|
783 |
-
Ensure your response is ONLY valid JSON with no additional text or markdown.
|
784 |
-
"""
|
785 |
-
|
786 |
-
content = self._generate_completion(system_prompt, user_prompt, temperature=0.8)
|
787 |
-
persona_json = json.loads(content)
|
788 |
-
|
789 |
-
# Adding more details to each persona to enhance realism
|
790 |
-
persona_json["preferred_speech_patterns"] = random.sample([p["pattern"] for p in self.speech_patterns], 2)
|
791 |
-
persona_json["primary_need_type"] = random.choice([n["type"] for n in self.customer_needs])
|
792 |
-
|
793 |
-
return persona_json
|
794 |
-
|
795 |
-
except Exception as e:
|
796 |
-
logger.error(f"Error attempt {attempt+1}/{max_retries} generating persona: {str(e)}")
|
797 |
-
if attempt < max_retries - 1:
|
798 |
-
# Exponential backoff
|
799 |
-
backoff_time = (2 ** attempt) + random.uniform(0, 1)
|
800 |
-
time.sleep(backoff_time)
|
801 |
-
else:
|
802 |
-
# Return a default persona as fallback but with more variation
|
803 |
-
logger.warning(f"Using fallback persona for {profile.company_name}")
|
804 |
-
return {
|
805 |
-
"name": f"{random.choice(['Alex', 'Jordan', 'Taylor', 'Sam', 'Morgan', 'Jamie'])} {random.choice(['Smith', 'Johnson', 'Wong', 'Garcia', 'Patel', 'Kim'])}",
|
806 |
-
"company": f"{random.choice(['Innovative', 'Global', 'Modern', 'Premier', 'Advanced'])} {random.choice(['Systems', 'Solutions', 'Technologies', 'Enterprises', 'Group'])}",
|
807 |
-
"role": random.choice(["Department Manager", "IT Director", "Operations Lead", "VP of Technology", "CFO", "CEO", "CTO"]),
|
808 |
-
"company_size": profile.company_size,
|
809 |
-
"industry": profile.industry,
|
810 |
-
"pain_points": ["Efficiency issues", "Cost management", "Integration challenges"],
|
811 |
-
"needs": ["Better reporting", "Team collaboration", "Process automation"],
|
812 |
-
"communication_preferences": random.sample(["Email", "Phone", "Chat", "In-person", "Video call"], 2),
|
813 |
-
"technical_expertise": random.choice(["low", "medium", "high"]),
|
814 |
-
"budget_sensitivity": random.choice(["low", "medium", "high"]),
|
815 |
-
"decision_making_authority": random.choice(["none", "influence", "decide"]),
|
816 |
-
"personality_traits": random.sample(["analytical", "direct", "cautious", "friendly", "detail-oriented", "big-picture", "skeptical"], 3),
|
817 |
-
"background": "Has been with the company for 5 years. Previously worked at a competitor.",
|
818 |
-
"objection_style": random.choice(["direct", "passive-aggressive", "analytical", "price-focused"]),
|
819 |
-
"preferred_speech_patterns": random.sample([p["pattern"] for p in self.speech_patterns], 2),
|
820 |
-
"primary_need_type": random.choice([n["type"] for n in self.customer_needs])
|
821 |
-
}
|
822 |
-
|
823 |
-
def _generate_conversation_scenario(self, profile: SaaSProfile, customer_persona: Dict) -> Dict:
|
824 |
-
"""Generate a diverse conversation scenario with improved complexity."""
|
825 |
-
max_retries = 3
|
826 |
-
for attempt in range(max_retries):
|
827 |
-
try:
|
828 |
-
# Select random conversation style and flow pattern for diversity
|
829 |
-
conversation_style = random.choice(self.conversation_styles)
|
830 |
-
conversation_flow = random.choice(self.conversation_flows)
|
831 |
-
communication_channel = random.choice(list(self.communication_channels.keys()))
|
832 |
-
|
833 |
-
# Randomize expected outcome to ensure dataset balance
|
834 |
-
expected_outcome = random.choice([True, False])
|
835 |
-
|
836 |
-
# Generate a conversion probability that matches the expected outcome
|
837 |
-
if expected_outcome:
|
838 |
-
# For positive outcomes, higher probability
|
839 |
-
expected_probability = random.uniform(0.6, 0.95)
|
840 |
-
else:
|
841 |
-
# For negative outcomes, lower probability
|
842 |
-
expected_probability = random.uniform(0.05, 0.4)
|
843 |
-
|
844 |
-
system_prompt = """You are an expert in creating realistic sales scenarios.
|
845 |
-
Generate a JSON object according to the specification. Focus on making the scenario detailed and context-rich."""
|
846 |
-
|
847 |
-
user_prompt = f"""
|
848 |
-
Create a detailed sales scenario between a {profile.company_name} representative and this customer:
|
849 |
-
|
850 |
-
{json.dumps(customer_persona, indent=2)}
|
851 |
-
|
852 |
-
Company & Product Details:
|
853 |
-
- Product: {profile.product_name}
|
854 |
-
- Description: {profile.product_description}
|
855 |
-
- Key Features: {", ".join(profile.key_features)}
|
856 |
-
- Common Objections: {", ".join(profile.common_objections)}
|
857 |
-
|
858 |
-
Use the following parameters to shape the scenario:
|
859 |
-
- Conversation style: {conversation_style}
|
860 |
-
- Conversation flow pattern: {conversation_flow}
|
861 |
-
- Communication channel: {communication_channel} ({self.communication_channels[communication_channel]["formality"]} formality, {self.communication_channels[communication_channel]["response_time"]} response time)
|
862 |
-
- Expected outcome: {"successful conversion" if expected_outcome else "no conversion"}
|
863 |
-
|
864 |
-
Return ONLY a JSON object with this exact structure:
|
865 |
-
{{
|
866 |
-
"customer_persona": {json.dumps(customer_persona)},
|
867 |
-
"sales_channel": "{communication_channel}",
|
868 |
-
"conversation_context": "Detailed background context for the conversation",
|
869 |
-
"customer_intent": "Specific reason why the customer initiated contact",
|
870 |
-
"customer_knowledge_level": "How much the customer already knows about the product or solution space",
|
871 |
-
"objection_focus": ["Specific objection 1", "Specific objection 2"],
|
872 |
-
"complexity": "simple/moderate/complex",
|
873 |
-
"expected_outcome": {"true" if expected_outcome else "false"},
|
874 |
-
"expected_conversion_probability": {expected_probability},
|
875 |
-
"conversation_style": "{conversation_style}",
|
876 |
-
"conversation_flow": "{conversation_flow}",
|
877 |
-
"critical_moment": "The turning point in the conversation where the outcome might be decided",
|
878 |
-
"time_pressure": "Whether there's urgency for a decision (none/some/high)",
|
879 |
-
"external_factors": ["Factor 1", "Factor 2"]
|
880 |
-
}}
|
881 |
-
|
882 |
-
Ensure your response is ONLY valid JSON with no additional text or markdown.
|
883 |
-
"""
|
884 |
-
|
885 |
-
content = self._generate_completion(system_prompt, user_prompt, temperature=0.8)
|
886 |
-
scenario_json = json.loads(content)
|
887 |
-
|
888 |
-
# Ensure expected_outcome is a boolean
|
889 |
-
if isinstance(scenario_json["expected_outcome"], str):
|
890 |
-
scenario_json["expected_outcome"] = scenario_json["expected_outcome"].lower() == "true"
|
891 |
-
|
892 |
-
# Ensure expected_conversion_probability is a float
|
893 |
-
if isinstance(scenario_json["expected_conversion_probability"], str):
|
894 |
-
scenario_json["expected_conversion_probability"] = float(scenario_json["expected_conversion_probability"])
|
895 |
-
|
896 |
-
return scenario_json
|
897 |
-
|
898 |
-
except Exception as e:
|
899 |
-
logger.error(f"Error attempt {attempt+1}/{max_retries} generating scenario: {str(e)}")
|
900 |
-
if attempt < max_retries - 1:
|
901 |
-
# Exponential backoff
|
902 |
-
backoff_time = (2 ** attempt) + random.uniform(0, 1)
|
903 |
-
time.sleep(backoff_time)
|
904 |
-
else:
|
905 |
-
# Return a default scenario as fallback but with more variation
|
906 |
-
logger.warning(f"Using fallback scenario for {profile.company_name}")
|
907 |
-
|
908 |
-
# Randomize expected outcome
|
909 |
-
expected_outcome = random.choice([True, False])
|
910 |
-
expected_probability = 0.7 if expected_outcome else 0.3
|
911 |
-
|
912 |
-
return {
|
913 |
-
"customer_persona": customer_persona,
|
914 |
-
"sales_channel": random.choice(list(self.communication_channels.keys())),
|
915 |
-
"conversation_context": random.choice(["Initial inquiry", "Follow-up call", "Demo meeting", "Pricing discussion", "Implementation planning"]),
|
916 |
-
"customer_intent": random.choice(["Exploring options", "Comparing vendors", "Addressing urgent need", "Planning future implementation", "Evaluating potential ROI"]),
|
917 |
-
"customer_knowledge_level": random.choice(["minimal", "moderate", "extensive"]),
|
918 |
-
"objection_focus": profile.common_objections[:2] if len(profile.common_objections) >= 2 else ["Price", "Implementation"],
|
919 |
-
"complexity": random.choice(["simple", "moderate", "complex"]),
|
920 |
-
"expected_outcome": expected_outcome,
|
921 |
-
"expected_conversion_probability": expected_probability,
|
922 |
-
"conversation_style": random.choice(self.conversation_styles),
|
923 |
-
"conversation_flow": random.choice(self.conversation_flows),
|
924 |
-
"critical_moment": "Discussion of pricing and ROI",
|
925 |
-
"time_pressure": random.choice(["none", "some", "high"]),
|
926 |
-
"external_factors": ["Budget cycle", "Competitor evaluation"]
|
927 |
-
}
|
928 |
-
|
929 |
-
def _apply_speech_patterns(self, text: str, patterns: List[str], probability: float = 0.3) -> str:
|
930 |
-
"""Apply realistic speech patterns to make text more human."""
|
931 |
-
if not text or not patterns or random.random() > probability:
|
932 |
-
return text
|
933 |
-
|
934 |
-
modified_text = text
|
935 |
-
|
936 |
-
for pattern_name in patterns:
|
937 |
-
# Find the pattern details
|
938 |
-
pattern_details = next((p for p in self.speech_patterns if p["pattern"] == pattern_name), None)
|
939 |
-
if not pattern_details or random.random() > 0.4: # Only apply some patterns
|
940 |
-
continue
|
941 |
-
|
942 |
-
examples = pattern_details["examples"]
|
943 |
-
|
944 |
-
if pattern_name == "filler_words":
|
945 |
-
# Insert filler words
|
946 |
-
words = modified_text.split()
|
947 |
-
for i in range(len(words) - 1):
|
948 |
-
if random.random() < 0.1: # 10% chance per position
|
949 |
-
filler = random.choice(examples)
|
950 |
-
words.insert(i + 1, filler)
|
951 |
-
modified_text = " ".join(words)
|
952 |
-
|
953 |
-
elif pattern_name == "typos":
|
954 |
-
# Replace some words with typos
|
955 |
-
words = modified_text.split()
|
956 |
-
for i, word in enumerate(words):
|
957 |
-
if len(word) > 3 and random.random() < 0.05: # 5% chance per word
|
958 |
-
# Simple typo simulation - swap two adjacent characters
|
959 |
-
char_list = list(word)
|
960 |
-
j = random.randint(0, len(char_list) - 2)
|
961 |
-
char_list[j], char_list[j + 1] = char_list[j + 1], char_list[j]
|
962 |
-
words[i] = "".join(char_list)
|
963 |
-
modified_text = " ".join(words)
|
964 |
-
|
965 |
-
elif pattern_name == "over_punctuation":
|
966 |
-
# Add excessive punctuation
|
967 |
-
for punct in ["!", "?", "..."]:
|
968 |
-
modified_text = modified_text.replace(f"{punct}", random.choice([f"{punct}", f"{punct}{punct}", f"{punct}{punct}{punct}"]))
|
969 |
-
|
970 |
-
elif pattern_name == "self_corrections":
|
971 |
-
# Add self-corrections
|
972 |
-
sentences = modified_text.split('. ')
|
973 |
-
if len(sentences) > 1:
|
974 |
-
i = random.randint(0, len(sentences) - 1)
|
975 |
-
correction = random.choice(examples)
|
976 |
-
sentences[i] = f"{sentences[i]}... {correction}, {sentences[i]}"
|
977 |
-
modified_text = '. '.join(sentences)
|
978 |
-
|
979 |
-
elif pattern_name == "emphasis_capital":
|
980 |
-
# Capitalize some words for emphasis
|
981 |
-
words = modified_text.split()
|
982 |
-
for i, word in enumerate(words):
|
983 |
-
if len(word) > 3 and word.isalpha() and random.random() < 0.05:
|
984 |
-
words[i] = word.upper()
|
985 |
-
modified_text = " ".join(words)
|
986 |
-
|
987 |
-
return modified_text
|
988 |
-
|
989 |
-
def _apply_channel_formatting(self, message: str, channel: str) -> str:
|
990 |
-
"""Apply formatting specific to different communication channels."""
|
991 |
-
if not channel in self.communication_channels:
|
992 |
-
return message
|
993 |
-
|
994 |
-
channel_format = self.communication_channels[channel]
|
995 |
-
modified_message = message
|
996 |
-
|
997 |
-
# Apply channel-specific formatting
|
998 |
-
if channel == "email":
|
999 |
-
# Add email elements like signatures or formal greetings randomly
|
1000 |
-
if random.random() < 0.3 and "sales_rep" in message:
|
1001 |
-
signature = f"\n\nBest regards,\n[Name]\n[Company]\n[Contact Info]"
|
1002 |
-
modified_message += signature
|
1003 |
-
|
1004 |
-
elif channel == "live_chat":
|
1005 |
-
# Add chat elements like quick responses or emojis
|
1006 |
-
if random.random() < 0.4:
|
1007 |
-
emojis = ["👍", "😊", "👋", "👏", "🙌", "💯", "🤔", "📊", "📈"]
|
1008 |
-
if random.random() < 0.5:
|
1009 |
-
modified_message += f" {random.choice(emojis)}"
|
1010 |
-
else:
|
1011 |
-
modified_message = f"{random.choice(emojis)} {modified_message}"
|
1012 |
-
|
1013 |
-
elif channel == "phone_call" or channel == "video_call":
|
1014 |
-
# Add verbal pause indicators
|
1015 |
-
verbal_pauses = ["*pauses*", "*brief silence*", "*thinking*"]
|
1016 |
-
if random.random() < 0.2:
|
1017 |
-
sentences = modified_message.split('. ')
|
1018 |
-
if len(sentences) > 1:
|
1019 |
-
i = random.randint(0, len(sentences) - 1)
|
1020 |
-
sentences[i] = f"{sentences[i]}. {random.choice(verbal_pauses)} "
|
1021 |
-
modified_message = '. '.join(sentences)
|
1022 |
-
|
1023 |
-
elif channel == "sms":
|
1024 |
-
# Shorten message and add abbreviations
|
1025 |
-
if len(modified_message) > 100 and random.random() < 0.5:
|
1026 |
-
# Replace some common words with abbreviations
|
1027 |
-
abbr = {"with": "w/", "without": "w/o", "thanks": "thx", "please": "pls",
|
1028 |
-
"about": "abt", "meeting": "mtg", "tomorrow": "tmrw"}
|
1029 |
-
for word, abbr_word in abbr.items():
|
1030 |
-
if random.random() < 0.5:
|
1031 |
-
modified_message = re.sub(r'\b' + word + r'\b', abbr_word, modified_message, flags=re.IGNORECASE)
|
1032 |
-
|
1033 |
-
return modified_message
|
1034 |
-
|
1035 |
-
def _generate_conversation(self, profile: SaaSProfile, scenario: Dict) -> Dict:
|
1036 |
-
"""Generate a complete human-like sales conversation with non-linear flows and realistic patterns."""
|
1037 |
-
max_retries = 3
|
1038 |
-
for attempt in range(max_retries):
|
1039 |
-
try:
|
1040 |
-
# Extract key scenario parameters for controlling the conversation
|
1041 |
-
channel = scenario.get("sales_channel", "email")
|
1042 |
-
conversation_style = scenario.get("conversation_style", "direct_professional")
|
1043 |
-
conversation_flow = scenario.get("conversation_flow", "standard_linear")
|
1044 |
-
expected_outcome = scenario.get("expected_outcome", True)
|
1045 |
-
|
1046 |
-
# Prepare persona information
|
1047 |
-
persona = scenario.get("customer_persona", {})
|
1048 |
-
persona_name = persona.get("name", "Customer")
|
1049 |
-
speech_patterns = persona.get("preferred_speech_patterns",
|
1050 |
-
random.sample([p["pattern"] for p in self.speech_patterns], 2))
|
1051 |
-
|
1052 |
-
# Prepare template parameters based on scenario
|
1053 |
-
min_messages = 8 # Minimum messages for a meaningful conversation
|
1054 |
-
max_messages = 18 # Maximum to keep conversations reasonably sized
|
1055 |
-
|
1056 |
-
# Adjust message count based on complexity
|
1057 |
-
if scenario.get("complexity") == "simple":
|
1058 |
-
target_messages = random.randint(8, 12)
|
1059 |
-
elif scenario.get("complexity") == "complex":
|
1060 |
-
target_messages = random.randint(14, 18)
|
1061 |
-
else: # moderate
|
1062 |
-
target_messages = random.randint(10, 14)
|
1063 |
-
|
1064 |
-
# Further customize conversation parameters based on flow type
|
1065 |
-
flow_params = {}
|
1066 |
-
if conversation_flow == "multiple_objection_loops":
|
1067 |
-
flow_params["objections_to_raise"] = min(len(profile.common_objections), 3)
|
1068 |
-
flow_params["objection_resolution_probability"] = 0.7 if expected_outcome else 0.4
|
1069 |
-
elif conversation_flow == "subject_switching":
|
1070 |
-
flow_params["topic_switches"] = random.randint(2, 4)
|
1071 |
-
flow_params["switch_probability"] = 0.3
|
1072 |
-
elif conversation_flow == "interrupted_followup":
|
1073 |
-
flow_params["interruption_point"] = random.randint(3, 5)
|
1074 |
-
flow_params["followup_delay"] = "a few hours" if channel in ["email", "chat"] else "a week"
|
1075 |
-
|
1076 |
-
# Create a conversation prompt that allows for natural, human-like dialogue
|
1077 |
-
system_prompt = f"""You are an expert in creating realistic sales conversations.
|
1078 |
-
Generate a JSON object with a natural, imperfect conversation between a sales rep and customer.
|
1079 |
-
|
1080 |
-
Important guidelines:
|
1081 |
-
- The conversation should feel HUMAN and NATURAL, not scripted or perfect
|
1082 |
-
- Include human elements: hesitations, typos, interruptions, tangents, repetition, in a millennial style
|
1083 |
-
- Do NOT open with cheesy greetings like "Hi X, this is Y from Z company" unless natural for the context
|
1084 |
-
- The customer should sometimes be unclear, ambiguous, or send incomplete thoughts
|
1085 |
-
- People sometimes send multiple messages in a row
|
1086 |
-
- Sometimes include pauses or pacing in the conversation
|
1087 |
-
- Not every objection needs to be perfectly addressed
|
1088 |
-
- Use natural language that matches the {channel} communication channel"""
|
1089 |
-
|
1090 |
-
user_prompt = f"""
|
1091 |
-
Generate a realistic {channel} sales conversation between a {profile.company_name} representative and a customer with:
|
1092 |
-
|
1093 |
-
CUSTOMER DETAILS:
|
1094 |
-
Name: {persona_name}
|
1095 |
-
Company: {persona.get('company', 'Company')}
|
1096 |
-
Role: {persona.get('role', 'Role')}
|
1097 |
-
Industry: {persona.get('industry', profile.industry)}
|
1098 |
-
Current pain points: {', '.join(persona.get('pain_points', ['Unspecified']))}
|
1099 |
-
Communication style: {persona.get('objection_style', 'direct')}
|
1100 |
-
Tech expertise: {persona.get('technical_expertise', 'medium')}
|
1101 |
-
|
1102 |
-
CONVERSATION CONTEXT:
|
1103 |
-
Channel: {channel}
|
1104 |
-
Context: {scenario.get('conversation_context', 'Initial inquiry')}
|
1105 |
-
Customer intent: {scenario.get('customer_intent', 'Exploring options')}
|
1106 |
-
Flow pattern: {conversation_flow}
|
1107 |
-
Style: {conversation_style}
|
1108 |
-
Expected outcome: {"conversion" if expected_outcome else "no conversion"}
|
1109 |
-
Primary objections: {', '.join(scenario.get('objection_focus', profile.common_objections[:2]))}
|
1110 |
-
|
1111 |
-
PRODUCT DETAILS:
|
1112 |
-
Product: {profile.product_name}
|
1113 |
-
Description: {profile.product_description}
|
1114 |
-
Key features: {', '.join(profile.key_features)}
|
1115 |
-
Value props: {', '.join(profile.value_propositions)}
|
1116 |
-
Pricing: {profile.pricing_structure.get('model', 'tiered')} - {profile.pricing_structure.get('tiers', [{}])[0].get('price', '$X/month')}
|
1117 |
-
|
1118 |
-
Return ONLY a JSON object with this exact structure:
|
1119 |
-
{{
|
1120 |
-
"messages": [
|
1121 |
-
{{"speaker": "customer/sales_rep", "message": "message text"}}
|
1122 |
-
],
|
1123 |
-
"outcome": {"true" if expected_outcome else "false"},
|
1124 |
-
"key_objections": ["Specific objection 1", "Specific objection 2"],
|
1125 |
-
"key_value_props_mentioned": ["Value prop 1", "Value prop 2"],
|
1126 |
-
"customer_engagement_level": 0.X,
|
1127 |
-
"sales_rep_effectiveness": 0.X,
|
1128 |
-
"conversation_length": X,
|
1129 |
-
"conversion_probability_at_turn": {{"0": 0.X, "1": 0.X}}
|
1130 |
-
}}
|
1131 |
-
|
1132 |
-
Include {target_messages} messages in the conversation. The conversion_probability_at_turn should show
|
1133 |
-
how the probability changes throughout the conversation.
|
1134 |
-
|
1135 |
-
IMPORTANT FORMATTING:
|
1136 |
-
- Make messages sound like real humans typing/talking with millennial style - include occasional typos, hesitations, filler words
|
1137 |
-
- Format the conversation appropriately for a {channel} conversation
|
1138 |
-
- Messages should vary in length - some short, some longer
|
1139 |
-
- Avoid perfect grammar and complete sentences when natural
|
1140 |
-
- Use contractions, abbreviations, and casual language where appropriate
|
1141 |
-
- For the customer, occasionally use multiple messages in a row
|
1142 |
-
- Use natural greetings appropriate to the channel, not formulaic ones
|
1143 |
-
"""
|
1144 |
-
|
1145 |
-
content = self._generate_completion(system_prompt, user_prompt, temperature=0.9)
|
1146 |
-
conversation_json = json.loads(content)
|
1147 |
-
|
1148 |
-
# Apply additional human-like formatting and speech patterns to each message
|
1149 |
-
for i, message in enumerate(conversation_json["messages"]):
|
1150 |
-
speaker = message.get("speaker", "")
|
1151 |
-
message_text = message.get("message", "")
|
1152 |
-
|
1153 |
-
# Apply appropriate speech patterns based on speaker
|
1154 |
-
if speaker == "customer":
|
1155 |
-
# Apply customer persona speech patterns
|
1156 |
-
message_text = self._apply_speech_patterns(message_text, speech_patterns, 0.5)
|
1157 |
-
else:
|
1158 |
-
# Apply general speech patterns for sales rep
|
1159 |
-
rep_patterns = random.sample([p["pattern"] for p in self.speech_patterns], 2)
|
1160 |
-
message_text = self._apply_speech_patterns(message_text, rep_patterns, 0.3)
|
1161 |
-
|
1162 |
-
# Apply channel-specific formatting
|
1163 |
-
message_text = self._apply_channel_formatting(message_text, channel)
|
1164 |
-
|
1165 |
-
# Apply non-linearity based on conversation flow
|
1166 |
-
if conversation_flow == "subject_switching" and random.random() < flow_params.get("switch_probability", 0):
|
1167 |
-
# Add topic switch indicators
|
1168 |
-
switches = ["By the way", "Actually, I also wanted to ask", "On another note",
|
1169 |
-
"While we're talking", "That reminds me", "Before I forget"]
|
1170 |
-
message_text += f" {random.choice(switches)}, {random.choice(profile.key_features)}?"
|
1171 |
-
|
1172 |
-
# Update the message
|
1173 |
-
conversation_json["messages"][i]["message"] = message_text
|
1174 |
-
|
1175 |
-
# Add markers for interrupted conversations if applicable
|
1176 |
-
if conversation_flow == "interrupted_followup":
|
1177 |
-
interrupt_point = flow_params.get("interruption_point", 4)
|
1178 |
-
if len(conversation_json["messages"]) > interrupt_point + 2:
|
1179 |
-
# Add interruption marker
|
1180 |
-
interrupt_idx = min(interrupt_point, len(conversation_json["messages"]) - 3)
|
1181 |
-
|
1182 |
-
# Add time passage marker
|
1183 |
-
time_marker = {"speaker": "system", "message": f"--- {flow_params.get('followup_delay', 'some time')} later ---"}
|
1184 |
-
conversation_json["messages"].insert(interrupt_idx + 1, time_marker)
|
1185 |
-
|
1186 |
-
# Add follow-up message from sales rep
|
1187 |
-
followup = {"speaker": "sales_rep", "message": self._apply_speech_patterns(
|
1188 |
-
f"Hi {persona_name}, I wanted to follow up on our previous conversation about {profile.product_name}. Have you had a chance to think more about it?",
|
1189 |
-
random.sample([p["pattern"] for p in self.speech_patterns], 2)
|
1190 |
-
)}
|
1191 |
-
conversation_json["messages"].insert(interrupt_idx + 2, followup)
|
1192 |
-
|
1193 |
-
# Ensure outcome is a boolean
|
1194 |
-
if isinstance(conversation_json["outcome"], str):
|
1195 |
-
conversation_json["outcome"] = conversation_json["outcome"].lower() == "true"
|
1196 |
-
|
1197 |
-
# Ensure numeric values are floats/ints
|
1198 |
-
if isinstance(conversation_json["customer_engagement_level"], str):
|
1199 |
-
conversation_json["customer_engagement_level"] = float(conversation_json["customer_engagement_level"])
|
1200 |
-
|
1201 |
-
if isinstance(conversation_json["sales_rep_effectiveness"], str):
|
1202 |
-
conversation_json["sales_rep_effectiveness"] = float(conversation_json["sales_rep_effectiveness"])
|
1203 |
-
|
1204 |
-
if isinstance(conversation_json["conversation_length"], str):
|
1205 |
-
conversation_json["conversation_length"] = int(conversation_json["conversation_length"])
|
1206 |
-
|
1207 |
-
# Ensure probability trajectory has numeric keys and values
|
1208 |
-
probability_trajectory = {}
|
1209 |
-
for k, v in conversation_json["conversion_probability_at_turn"].items():
|
1210 |
-
if isinstance(v, str):
|
1211 |
-
v = float(v)
|
1212 |
-
probability_trajectory[int(k)] = float(v)
|
1213 |
-
conversation_json["conversion_probability_at_turn"] = probability_trajectory
|
1214 |
-
|
1215 |
-
# Add scenario data to the conversation for reference
|
1216 |
-
conversation_json["scenario"] = {
|
1217 |
-
"channel": channel,
|
1218 |
-
"conversation_style": conversation_style,
|
1219 |
-
"conversation_flow": conversation_flow
|
1220 |
-
}
|
1221 |
-
|
1222 |
-
return conversation_json
|
1223 |
-
|
1224 |
-
except Exception as e:
|
1225 |
-
logger.error(f"Error attempt {attempt+1}/{max_retries} generating conversation: {str(e)}")
|
1226 |
-
if attempt < max_retries - 1:
|
1227 |
-
# Exponential backoff
|
1228 |
-
backoff_time = (2 ** attempt) + random.uniform(0, 1)
|
1229 |
-
time.sleep(backoff_time)
|
1230 |
-
else:
|
1231 |
-
# Return a minimal conversation as fallback
|
1232 |
-
logger.warning(f"Using fallback conversation for {profile.company_name}")
|
1233 |
-
expected_outcome = scenario.get("expected_outcome", True)
|
1234 |
-
|
1235 |
-
# Create more varied fallback conversations
|
1236 |
-
starters = [
|
1237 |
-
"Hey, I've been looking around for a solution like yours.",
|
1238 |
-
"I need some help with my current processes.",
|
1239 |
-
"Been hearing about your product, got some questions.",
|
1240 |
-
"Our team needs something better than what we're using.",
|
1241 |
-
"Quick question about your pricing."
|
1242 |
-
]
|
1243 |
-
|
1244 |
-
responses = [
|
1245 |
-
f"Thanks for reaching out! What specific challenges are you facing?",
|
1246 |
-
f"Happy to help! What's your current setup like?",
|
1247 |
-
f"I'd be glad to answer questions. What would you like to know?",
|
1248 |
-
f"Sure thing. What's not working with your current solution?",
|
1249 |
-
f"Of course, I can walk you through our pricing. What's your use case?"
|
1250 |
-
]
|
1251 |
-
|
1252 |
-
# Generate a basic conversation with some variation
|
1253 |
-
messages = [
|
1254 |
-
{"speaker": "customer", "message": random.choice(starters)},
|
1255 |
-
{"speaker": "sales_rep", "message": random.choice(responses)},
|
1256 |
-
{"speaker": "customer", "message": f"We're looking for a {profile.product_name} solution. What makes your product different?"},
|
1257 |
-
{"speaker": "sales_rep", "message": f"Our {profile.product_name} stands out because of {profile.value_propositions[0] if profile.value_propositions else 'its features'}. Many of our customers appreciate this."}
|
1258 |
-
]
|
1259 |
-
|
1260 |
-
# Add a bit more variation based on expected outcome
|
1261 |
-
if expected_outcome:
|
1262 |
-
messages.append({"speaker": "customer", "message": "That sounds interesting. Can you tell me more about your pricing?"})
|
1263 |
-
messages.append({"speaker": "sales_rep", "message": f"Our pricing starts at {profile.pricing_structure.get('tiers', [{}])[0].get('price', '$X/month')}. Would you like to schedule a demo?"})
|
1264 |
-
messages.append({"speaker": "customer", "message": "Yes, that would be helpful. Let's set something up for next week."})
|
1265 |
-
else:
|
1266 |
-
messages.append({"speaker": "customer", "message": "That's interesting, but I'm not sure it fits our needs right now. Let me think about it."})
|
1267 |
-
messages.append({"speaker": "sales_rep", "message": f"I understand. Would it be helpful if I sent you some more information about our {profile.product_name}?"})
|
1268 |
-
messages.append({"speaker": "customer", "message": "Maybe later. We're still evaluating other options at the moment."})
|
1269 |
-
|
1270 |
-
# Create probability trajectory
|
1271 |
-
probability_trajectory = {}
|
1272 |
-
for i in range(len(messages)):
|
1273 |
-
if expected_outcome:
|
1274 |
-
prob = min(0.5 + i * 0.07, 0.9)
|
1275 |
-
else:
|
1276 |
-
prob = max(0.5 - i * 0.07, 0.1)
|
1277 |
-
probability_trajectory[i] = prob
|
1278 |
-
|
1279 |
-
return {
|
1280 |
-
"messages": messages,
|
1281 |
-
"outcome": expected_outcome,
|
1282 |
-
"key_objections": scenario.get("objection_focus", ["Price", "Implementation"]),
|
1283 |
-
"key_value_props_mentioned": profile.value_propositions[:2] if len(profile.value_propositions) >= 2 else ["Value", "Efficiency"],
|
1284 |
-
"customer_engagement_level": 0.7 if expected_outcome else 0.4,
|
1285 |
-
"sales_rep_effectiveness": 0.6 if expected_outcome else 0.5,
|
1286 |
-
"conversation_length": len(messages),
|
1287 |
-
"conversion_probability_at_turn": probability_trajectory,
|
1288 |
-
"scenario": {
|
1289 |
-
"channel": scenario.get("sales_channel", "email"),
|
1290 |
-
"conversation_style": scenario.get("conversation_style", "direct_professional"),
|
1291 |
-
"conversation_flow": scenario.get("conversation_flow", "standard_linear")
|
1292 |
-
}
|
1293 |
-
}
|
1294 |
-
|
1295 |
-
def _generate_full_conversation(self, profile_idx: int, conversation_idx: int) -> Dict:
|
1296 |
-
"""Generate a complete conversation from profile to final conversation data."""
|
1297 |
-
with self.profile_lock:
|
1298 |
-
profile = self.profiles[profile_idx]
|
1299 |
-
|
1300 |
-
try:
|
1301 |
-
# Generate customer persona with more richness and diversity
|
1302 |
-
persona = self._generate_customer_persona(profile)
|
1303 |
-
|
1304 |
-
# Generate conversation scenario with more variables
|
1305 |
-
scenario = self._generate_conversation_scenario(profile, persona)
|
1306 |
-
|
1307 |
-
# Generate complete conversation with more natural and varied flow
|
1308 |
-
conversation_data = self._generate_conversation(profile, scenario)
|
1309 |
-
|
1310 |
-
# Get conversation embeddings
|
1311 |
-
full_text = " ".join([msg["message"] for msg in conversation_data["messages"] if msg.get("speaker") != "system"])
|
1312 |
-
embeddings = self._get_embedding(full_text)
|
1313 |
-
|
1314 |
-
# Create row data
|
1315 |
-
row_data = {
|
1316 |
-
'company_id': profile.company_id,
|
1317 |
-
'company_name': profile.company_name,
|
1318 |
-
'product_name': profile.product_name,
|
1319 |
-
'product_type': profile.industry,
|
1320 |
-
'conversation_id': f"{profile.company_id}-conv-{conversation_idx}",
|
1321 |
-
'scenario': json.dumps(scenario),
|
1322 |
-
'conversation': json.dumps(conversation_data["messages"]),
|
1323 |
-
'full_text': full_text,
|
1324 |
-
'outcome': 1 if conversation_data["outcome"] else 0,
|
1325 |
-
'conversation_length': conversation_data["conversation_length"],
|
1326 |
-
'customer_engagement': conversation_data["customer_engagement_level"],
|
1327 |
-
'sales_effectiveness': conversation_data["sales_rep_effectiveness"],
|
1328 |
-
'probability_trajectory': json.dumps(conversation_data["conversion_probability_at_turn"]),
|
1329 |
-
'conversation_style': scenario.get("conversation_style", "direct_professional"),
|
1330 |
-
'conversation_flow': scenario.get("conversation_flow", "standard_linear"),
|
1331 |
-
'communication_channel': scenario.get("sales_channel", "email")
|
1332 |
-
}
|
1333 |
-
|
1334 |
-
# Add embeddings
|
1335 |
-
for j, embed_value in enumerate(embeddings):
|
1336 |
-
row_data[f'embedding_{j}'] = embed_value
|
1337 |
-
|
1338 |
-
# Update counter
|
1339 |
-
with self.total_counter_lock:
|
1340 |
-
self.total_generated += 1
|
1341 |
-
total = self.total_generated
|
1342 |
-
|
1343 |
-
if total % 100 == 0:
|
1344 |
-
logger.info(f"Generated {total} conversations so far")
|
1345 |
-
|
1346 |
-
return row_data
|
1347 |
-
|
1348 |
-
except Exception as e:
|
1349 |
-
logger.error(f"Error generating conversation {conversation_idx} for profile {profile_idx}: {str(e)}")
|
1350 |
-
return None
|
1351 |
-
|
1352 |
-
def _worker(self, task_queue, result_batch_size=5):
|
1353 |
-
"""Worker function that processes tasks from the queue with immediate saving"""
|
1354 |
-
batch = []
|
1355 |
-
|
1356 |
-
while True:
|
1357 |
-
try:
|
1358 |
-
# Get task from queue with timeout
|
1359 |
-
task = task_queue.get(timeout=5)
|
1360 |
-
|
1361 |
-
# Check for termination signal
|
1362 |
-
if task is None:
|
1363 |
-
# Submit any remaining items in batch
|
1364 |
-
if batch:
|
1365 |
-
self.writer.write_rows(batch)
|
1366 |
-
task_queue.task_done()
|
1367 |
-
break
|
1368 |
-
|
1369 |
-
# Add a random delay to stagger requests
|
1370 |
-
time.sleep(random.uniform(0.1, 0.5))
|
1371 |
-
|
1372 |
-
# Process the task
|
1373 |
-
profile_idx, conv_idx = task
|
1374 |
-
row_data = self._generate_full_conversation(profile_idx, conv_idx)
|
1375 |
-
|
1376 |
-
if row_data:
|
1377 |
-
batch.append(row_data)
|
1378 |
-
|
1379 |
-
# Write batch when it reaches the threshold - use smaller batch size (5 instead of 10)
|
1380 |
-
if len(batch) >= result_batch_size:
|
1381 |
-
self.writer.write_rows(batch)
|
1382 |
-
batch = [] # Clear batch after writing
|
1383 |
-
|
1384 |
-
# Mark task as done
|
1385 |
-
task_queue.task_done()
|
1386 |
-
|
1387 |
-
except queue.Empty:
|
1388 |
-
# Check if there are any items in the batch to write
|
1389 |
-
if batch:
|
1390 |
-
self.writer.write_rows(batch)
|
1391 |
-
batch = []
|
1392 |
-
continue
|
1393 |
-
except Exception as e:
|
1394 |
-
logger.error(f"Error in worker thread: {str(e)}")
|
1395 |
-
try:
|
1396 |
-
# Write any collected data before potentially crashing
|
1397 |
-
if batch:
|
1398 |
-
self.writer.write_rows(batch)
|
1399 |
-
batch = []
|
1400 |
-
task_queue.task_done()
|
1401 |
-
except:
|
1402 |
-
pass
|
1403 |
-
|
1404 |
-
def generate_dataset(
|
1405 |
-
self,
|
1406 |
-
num_conversations: int = 100000,
|
1407 |
-
num_profiles: int = 20,
|
1408 |
-
output_path: str = "enhanced_saas_sales_conversations.csv",
|
1409 |
-
num_threads: int = 25,
|
1410 |
-
result_batch_size: int = 5
|
1411 |
-
) -> str:
|
1412 |
-
"""
|
1413 |
-
Generate a complete dataset of diverse sales conversations using multithreading.
|
1414 |
-
|
1415 |
-
Args:
|
1416 |
-
num_conversations: Total number of conversations to generate
|
1417 |
-
num_profiles: Number of unique SaaS profiles to use
|
1418 |
-
output_path: Path to save the CSV dataset
|
1419 |
-
num_threads: Number of worker threads to use
|
1420 |
-
result_batch_size: Number of items to batch before writing to CSV
|
1421 |
-
|
1422 |
-
Returns:
|
1423 |
-
Path to the generated dataset
|
1424 |
-
"""
|
1425 |
-
logger.info(f"Starting enhanced dataset generation: {num_conversations} conversations using {num_profiles} profiles with {num_threads} threads")
|
1426 |
-
|
1427 |
-
start_time = time.time()
|
1428 |
-
|
1429 |
-
# Generate SaaS profiles first (this is done in parallel already)
|
1430 |
-
self.profiles = self.generate_saas_profiles(num_profiles)
|
1431 |
-
|
1432 |
-
# Initialize counters
|
1433 |
-
self.total_generated = 0
|
1434 |
-
self.api_calls = 0
|
1435 |
-
self.retry_count = 0
|
1436 |
-
self.last_retry_time = 0
|
1437 |
-
|
1438 |
-
# Define columns for the dataset
|
1439 |
-
columns = ['company_id', 'company_name', 'product_name', 'product_type',
|
1440 |
-
'conversation_id', 'scenario', 'conversation', 'full_text',
|
1441 |
-
'outcome', 'conversation_length', 'customer_engagement',
|
1442 |
-
'sales_effectiveness', 'probability_trajectory',
|
1443 |
-
'conversation_style', 'conversation_flow', 'communication_channel']
|
1444 |
-
|
1445 |
-
# Add embedding columns
|
1446 |
-
for i in range(3072):
|
1447 |
-
columns.append(f'embedding_{i}')
|
1448 |
-
|
1449 |
-
# Initialize the writer
|
1450 |
-
self.writer = ResultWriter(output_path, columns)
|
1451 |
-
|
1452 |
-
# Create task queue and populate it
|
1453 |
-
task_queue = queue.Queue()
|
1454 |
-
|
1455 |
-
# Calculate conversations per profile
|
1456 |
-
conversations_per_profile = num_conversations // len(self.profiles)
|
1457 |
-
remaining = num_conversations % len(self.profiles)
|
1458 |
-
|
1459 |
-
# Create tasks (profile_idx, conversation_idx) with more even distribution
|
1460 |
-
for profile_idx in range(len(self.profiles)):
|
1461 |
-
profile_conversations = conversations_per_profile
|
1462 |
-
if profile_idx < remaining:
|
1463 |
-
profile_conversations += 1
|
1464 |
-
|
1465 |
-
for conv_idx in range(profile_conversations):
|
1466 |
-
task_queue.put((profile_idx, conv_idx))
|
1467 |
-
|
1468 |
-
# Calculate effective thread count based on rate limits
|
1469 |
-
# Each conversation makes about 4 API calls (persona, scenario, conversation, embedding)
|
1470 |
-
# We want to use only about 50% of the rate limit for better stability
|
1471 |
-
requests_per_conversation = 4
|
1472 |
-
requests_per_minute_per_thread = 10 # Conservative estimate
|
1473 |
-
target_threads = (SAFE_RATE_LIMIT_RPM) / requests_per_minute_per_thread
|
1474 |
-
|
1475 |
-
# Determine effective thread count
|
1476 |
-
effective_threads = min(
|
1477 |
-
num_threads, # User requested threads
|
1478 |
-
int(target_threads), # Rate-limit-based threads
|
1479 |
-
30, # Hard limit for stability
|
1480 |
-
task_queue.qsize() # No more threads than tasks
|
1481 |
-
)
|
1482 |
-
|
1483 |
-
logger.info(f"Using {effective_threads} threads based on rate limit of {RATE_LIMIT_RPM} RPM")
|
1484 |
-
|
1485 |
-
# Start worker threads
|
1486 |
-
workers = []
|
1487 |
-
for _ in range(effective_threads):
|
1488 |
-
worker = threading.Thread(target=self._worker, args=(task_queue, result_batch_size))
|
1489 |
-
worker.daemon = True
|
1490 |
-
worker.start()
|
1491 |
-
workers.append(worker)
|
1492 |
-
|
1493 |
-
# Progress indicator and statistics tracker
|
1494 |
-
last_count = 0
|
1495 |
-
last_stats_time = time.time()
|
1496 |
-
with tqdm(total=num_conversations, desc="Generating conversations") as pbar:
|
1497 |
-
while self.total_generated < num_conversations:
|
1498 |
-
time.sleep(1) # Update progress every second
|
1499 |
-
|
1500 |
-
with self.total_counter_lock:
|
1501 |
-
current_count = self.total_generated
|
1502 |
-
|
1503 |
-
# Update progress bar
|
1504 |
-
delta = current_count - last_count
|
1505 |
-
if delta > 0:
|
1506 |
-
pbar.update(delta)
|
1507 |
-
last_count = current_count
|
1508 |
-
|
1509 |
-
# Print statistics every 60 seconds
|
1510 |
-
now = time.time()
|
1511 |
-
if now - last_stats_time > 60:
|
1512 |
-
# Calculate API call rate
|
1513 |
-
with self.api_call_lock:
|
1514 |
-
api_calls = self.api_calls
|
1515 |
-
|
1516 |
-
with self.retry_lock:
|
1517 |
-
retries = self.retry_count
|
1518 |
-
|
1519 |
-
elapsed = now - start_time
|
1520 |
-
calls_per_minute = (api_calls / elapsed) * 60
|
1521 |
-
|
1522 |
-
logger.info(f"Statistics - Generated: {current_count}, API calls: {api_calls} " +
|
1523 |
-
f"({calls_per_minute:.1f}/min), Retries: {retries}")
|
1524 |
-
|
1525 |
-
last_stats_time = now
|
1526 |
-
|
1527 |
-
# Check if we've reached our target or if the queue is empty
|
1528 |
-
if current_count >= num_conversations or task_queue.empty():
|
1529 |
-
break
|
1530 |
-
|
1531 |
-
# Signal workers to terminate
|
1532 |
-
for _ in range(effective_threads):
|
1533 |
-
task_queue.put(None)
|
1534 |
-
|
1535 |
-
# Wait for all workers to finish (with timeout)
|
1536 |
-
for worker in workers:
|
1537 |
-
worker.join(timeout=30)
|
1538 |
-
|
1539 |
-
end_time = time.time()
|
1540 |
-
duration = end_time - start_time
|
1541 |
-
|
1542 |
-
# Calculate final statistics
|
1543 |
-
with self.api_call_lock:
|
1544 |
-
total_api_calls = self.api_calls
|
1545 |
-
|
1546 |
-
with self.retry_lock:
|
1547 |
-
total_retries = self.retry_count
|
1548 |
-
|
1549 |
-
logger.info(f"Dataset generation complete. Statistics:")
|
1550 |
-
logger.info(f"- Total conversations: {self.total_generated}")
|
1551 |
-
logger.info(f"- Total API calls: {total_api_calls}")
|
1552 |
-
logger.info(f"- Total retries: {total_retries}")
|
1553 |
-
logger.info(f"- Generation took {duration:.2f} seconds ({self.total_generated / duration:.2f} conversations/second)")
|
1554 |
-
logger.info(f"- API call rate: {(total_api_calls / duration) * 60:.1f} calls/minute")
|
1555 |
-
|
1556 |
-
return output_path
|
1557 |
-
|
1558 |
-
def main():
|
1559 |
-
"""Main function to run the enhanced dataset generator."""
|
1560 |
-
import argparse
|
1561 |
-
|
1562 |
-
parser = argparse.ArgumentParser(description="Enhanced SaaS Sales Dataset Generator")
|
1563 |
-
parser.add_argument("--num_conversations", type=int, default=100000,
|
1564 |
-
help="Number of conversations to generate")
|
1565 |
-
parser.add_argument("--num_profiles", type=int, default=20,
|
1566 |
-
help="Number of SaaS profiles to generate")
|
1567 |
-
parser.add_argument("--output_path", type=str, default="enhanced_saas_sales_conversations.csv",
|
1568 |
-
help="Path to save the generated dataset")
|
1569 |
-
parser.add_argument("--num_threads", type=int, default=25,
|
1570 |
-
help="Number of worker threads to use (will be rate-limited)")
|
1571 |
-
parser.add_argument("--rate_limit", type=int, default=2500,
|
1572 |
-
help="API rate limit in requests per minute")
|
1573 |
-
parser.add_argument("--batch_size", type=int, default=5,
|
1574 |
-
help="Number of conversations to batch before writing to CSV")
|
1575 |
-
|
1576 |
-
args = parser.parse_args()
|
1577 |
-
|
1578 |
-
# Update rate limit if provided
|
1579 |
-
global RATE_LIMIT_RPM, SAFE_RATE_LIMIT_RPM, RATE_LIMIT_RPS, MIN_REQUEST_INTERVAL
|
1580 |
-
if args.rate_limit:
|
1581 |
-
RATE_LIMIT_RPM = args.rate_limit
|
1582 |
-
SAFE_RATE_LIMIT_RPM = int(RATE_LIMIT_RPM * 0.6)
|
1583 |
-
RATE_LIMIT_RPS = SAFE_RATE_LIMIT_RPM / 60
|
1584 |
-
MIN_REQUEST_INTERVAL = 1.0 / RATE_LIMIT_RPS
|
1585 |
-
|
1586 |
-
# Initialize generator
|
1587 |
-
generator = EnhancedSaaSDatasetGenerator()
|
1588 |
-
|
1589 |
-
# Generate dataset
|
1590 |
-
output_path = generator.generate_dataset(
|
1591 |
-
num_conversations=args.num_conversations,
|
1592 |
-
num_profiles=args.num_profiles,
|
1593 |
-
output_path=args.output_path,
|
1594 |
-
num_threads=args.num_threads,
|
1595 |
-
result_batch_size=args.batch_size
|
1596 |
-
)
|
1597 |
-
|
1598 |
-
print(f"\nEnhanced dataset generation complete!")
|
1599 |
-
print(f"Dataset saved to: {output_path}")
|
1600 |
-
|
1601 |
-
if __name__ == "__main__":
|
1602 |
-
main()
|
1603 |
-
#python generate_dataset.py --num_conversations 100000 --num_profiles 20 --output_path custom_dataset.csv --num_threads 15 --rate_limit 2000 --batch_size 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|