Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +15 -15
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 261.32 +/- 37.90
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f7fef3dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f7fef3e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f7fef3ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f7fef3f70>", "_build": "<function ActorCriticPolicy._build at 0x7f6f7fef8040>", "forward": "<function ActorCriticPolicy.forward at 0x7f6f7fef80d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f7fef8160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6f7fef81f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f7fef8280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f7fef8310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f7fef83a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6f7fef06f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671651279930148797, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMvwT1Im4i66uziOnc2njWMkTK5U9kDugAAgD8AAAAAAJAGO1zfFjlbo5G6WmZwtXUV3Tltha05AACAPwAAgD9mOrA77jmgP6Jmzzz00ay+rvy8PFBwp70AAAAAAAAAAM0ogDwUTpu69wckuVdGL7RyifM6ejk9OAAAgD8AAIA/AFDnOinEf7oAXW07wOv0N1ekLLtQDCS6AACAPwAAgD8aIGw9w9FUupzAIDsaXlK1lx4St2dvPboAAIA/AACAP81ce7zDGV66brCtt+8YljD+T427IhXJNgAAgD8AAIA/AG26PPagProO8d41M7l+Mcn1hDv0HQK1AACAPwAAgD8AvDU8QKy/P7NcVT3HRyQ96D3lPS8jOD4AAAAAAAAAAM2HIj0UDIC6wk+SOqmuhzXPiTm6BuKquQAAgD8AAIA/gHcBPcMxW7rSCZc7p7s/OF/murktwfG3AACAPwAAgD9mArg97JHHuRXA97pqz3U1g5V6OyNJ57QAAIA/AAAAABoMGb7BK5M/qJkJvxmSx75A0Ra+mmCMvgAAAAAAAAAA5qIZPe/7bz9u8ly9T4isvjLT9TyY31k8AAAAAAAAAABmZX099lw6uv1hjrniLf+0LEf1OZYopjgAAIA/AACAPzN85Tyfhpy7pA0CPOTakDzSats8uIx2vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfsUaLnJKaECUhpRSlIwBbJRN6AOMAXSUR0CmcdmC7K7qdX2UKGgGaAloD0MI4UVfQZoxaECUhpRSlGgVTegDaBZHQKZzx+3pfQd1fZQoaAZoCWgPQwhZTkLpi5ZiQJSGlFKUaBVN6ANoFkdApnR/XK8tgHV9lChoBmgJaA9DCOLnvwev9lJAlIaUUpRoFUvpaBZHQKZ2y3y7PIJ1fZQoaAZoCWgPQwjZ7bPKzE9gQJSGlFKUaBVN6ANoFkdApng7gZTAFnV9lChoBmgJaA9DCKBSJcrecWdAlIaUUpRoFU3oA2gWR0CmeTtUn5SFdX2UKGgGaAloD0MIr3rAPGTNYkCUhpRSlGgVTegDaBZHQKZ52yE+Pil1fZQoaAZoCWgPQwjjcOZXs9hxQJSGlFKUaBVN9wFoFkdApn2ObRWtEHV9lChoBmgJaA9DCHY0DvU7Om9AlIaUUpRoFU0eAmgWR0CmfZVh9b5edX2UKGgGaAloD0MIhBJm2r5VcUCUhpRSlGgVTdcCaBZHQKZ+F9CNS611fZQoaAZoCWgPQwguGjIe5W5wQJSGlFKUaBVN2wFoFkdApn9fq7iAD3V9lChoBmgJaA9DCN/CuvHuoV5AlIaUUpRoFU3oA2gWR0Cmf8mUOd5IdX2UKGgGaAloD0MIIQGjy5v9YkCUhpRSlGgVTegDaBZHQKaAf9uxbB51fZQoaAZoCWgPQwgRbcfU3VlnQJSGlFKUaBVN6ANoFkdApoF+F6AvtnV9lChoBmgJaA9DCDav6qyWP2hAlIaUUpRoFU3oA2gWR0CmjddaEBbOdX2UKGgGaAloD0MI/12fOevNbkCUhpRSlGgVTcYCaBZHQKaO8tCAtnR1fZQoaAZoCWgPQwgWM8Lbg29eQJSGlFKUaBVN6ANoFkdAppDvE87p3XV9lChoBmgJaA9DCKJ71jXarWRAlIaUUpRoFU3oA2gWR0CmkVSWJJoTdX2UKGgGaAloD0MI3o0FhUHoYkCUhpRSlGgVTegDaBZHQKaSsOFQEZB1fZQoaAZoCWgPQwgZARWOIINjQJSGlFKUaBVN6ANoFkdAppjedbxEv3V9lChoBmgJaA9DCGmQgqeQnGJAlIaUUpRoFU3oA2gWR0CmmlxYA80UdX2UKGgGaAloD0MIpu7KLhgfZECUhpRSlGgVTegDaBZHQKabV5t3wCt1fZQoaAZoCWgPQwg3je21oE5nQJSGlFKUaBVN6ANoFkdAppvsu14PgHV9lChoBmgJaA9DCFrVko6y8XFAlIaUUpRoFU3pAWgWR0CmnYTG5tm+dX2UKGgGaAloD0MInDHMCVofZECUhpRSlGgVTegDaBZHQKafDUMoc711fZQoaAZoCWgPQwgArI4caXRkQJSGlFKUaBVN6ANoFkdApp8SI55qunV9lChoBmgJaA9DCN5VD5jHfnBAlIaUUpRoFU0IAmgWR0Cmn30YKpkxdX2UKGgGaAloD0MIwqG3ePgzaECUhpRSlGgVTegDaBZHQKafglAu7H11fZQoaAZoCWgPQwg3ixcLQ7hlQJSGlFKUaBVN6ANoFkdApqB61uzhP3V9lChoBmgJaA9DCIgOgSOBc2JAlIaUUpRoFU3oA2gWR0CmoMzpgTh6dX2UKGgGaAloD0MIvMrapngGZECUhpRSlGgVTegDaBZHQKahcfHxSYR1fZQoaAZoCWgPQwgFbAcj9h1EQJSGlFKUaBVL7GgWR0CmokXwb2lEdX2UKGgGaAloD0MITwXc83y4Y0CUhpRSlGgVTegDaBZHQKaiS2aUiY91fZQoaAZoCWgPQwiXHHdKh4FxQJSGlFKUaBVNBAJoFkdApq0oBDG96HV9lChoBmgJaA9DCAKaCBuey2dAlIaUUpRoFU3oA2gWR0Cmri61kUbldX2UKGgGaAloD0MIknU4ukpjZkCUhpRSlGgVTegDaBZHQKavNSvTw2F1fZQoaAZoCWgPQwhRvwtbM6djQJSGlFKUaBVN6ANoFkdAprEk2zfJm3V9lChoBmgJaA9DCF66SQwC9XBAlIaUUpRoFU3vAWgWR0Cmsu3mV7hOdX2UKGgGaAloD0MIou9uZYnmMUCUhpRSlGgVS+doFkdAprchzijtX3V9lChoBmgJaA9DCDunWaDdgHJAlIaUUpRoFU0mAmgWR0CmuLcnNPgvdX2UKGgGaAloD0MI32qduJz1Y0CUhpRSlGgVTegDaBZHQKa6qwPAfuF1fZQoaAZoCWgPQwitbB/yVqtwQJSGlFKUaBVNFQNoFkdAprsXOlfqo3V9lChoBmgJaA9DCNF5jV2iiW5AlIaUUpRoFU3hAmgWR0CmuyOhsZYQdX2UKGgGaAloD0MIGM+gof8gZkCUhpRSlGgVTegDaBZHQKa7mxB3Roh1fZQoaAZoCWgPQwjv5xTk5zZiQJSGlFKUaBVN6ANoFkdAprwe8kD6nHV9lChoBmgJaA9DCMb7cfvlvGVAlIaUUpRoFU3oA2gWR0Cmvxf9Hc1wdX2UKGgGaAloD0MIGXRC6KD7Y0CUhpRSlGgVTegDaBZHQKa/jRDTjNp1fZQoaAZoCWgPQwjbiv1l945nQJSGlFKUaBVN6ANoFkdApsE20eEIxHV9lChoBmgJaA9DCH/5ZMVwhWFAlIaUUpRoFU3oA2gWR0CmwftPpIMCdX2UKGgGaAloD0MIe4hGdxA6ZkCUhpRSlGgVTegDaBZHQKbC8Rradtl1fZQoaAZoCWgPQwhnKO54k4VmQJSGlFKUaBVN6ANoFkdApsTlbFCLM3V9lChoBmgJaA9DCPda0HtjYGhAlIaUUpRoFU3oA2gWR0CmzzLRSgoPdX2UKGgGaAloD0MIXoQpyiUUYECUhpRSlGgVTegDaBZHQKbQVsBQvYh1fZQoaAZoCWgPQwghWcAErgtyQJSGlFKUaBVNnAJoFkdAptNNsHjZMHV9lChoBmgJaA9DCE/qy9LOB2JAlIaUUpRoFU3oA2gWR0Cm1CB37k4ndX2UKGgGaAloD0MI6J/gYkXTbkCUhpRSlGgVTQEDaBZHQKbWSrxy4nZ1fZQoaAZoCWgPQwhpHsAif1BwQJSGlFKUaBVNZQJoFkdAptei0dBBzHV9lChoBmgJaA9DCLw7MlabDV9AlIaUUpRoFU3oA2gWR0Cm2DJgTh5xdX2UKGgGaAloD0MINufgmVDvYkCUhpRSlGgVTegDaBZHQKbZl4lhPTJ1fZQoaAZoCWgPQwgk7rH0IXhyQJSGlFKUaBVNgQJoFkdAptu6YJE6UHV9lChoBmgJaA9DCJBN8iN+oWhAlIaUUpRoFU3oA2gWR0Cm28Y/NZ/1dX2UKGgGaAloD0MIP/1nzY/uYkCUhpRSlGgVTegDaBZHQKbcRHR1HON1fZQoaAZoCWgPQwhYyFwZ1CFlQJSGlFKUaBVN6ANoFkdAptzNkc0cfnV9lChoBmgJaA9DCP62J0hsM3FAlIaUUpRoFU2FAmgWR0Cm3rzijtXxdX2UKGgGaAloD0MINX12wLUWckCUhpRSlGgVTXIDaBZHQKbfXD2rXDp1fZQoaAZoCWgPQwg1KJoHMB5yQJSGlFKUaBVN5AFoFkdApt9xjz7MxHV9lChoBmgJaA9DCKa4quy7l2JAlIaUUpRoFU3oA2gWR0Cm3+BcAzYVdX2UKGgGaAloD0MIq+tQTUlhUECUhpRSlGgVS8BoFkdApt/sM3IdVHV9lChoBmgJaA9DCGFPO/w1Q29AlIaUUpRoFU2jAmgWR0Cm4DwIldC3dX2UKGgGaAloD0MIk8g+yDKiYUCUhpRSlGgVTegDaBZHQKbiQEQGwA51fZQoaAZoCWgPQwghPrDjP71jQJSGlFKUaBVN6ANoFkdApuUFXJYDDHV9lChoBmgJaA9DCIVbPpKSPm9AlIaUUpRoFU3SAWgWR0Cm70pOvdM1dX2UKGgGaAloD0MITgte9NWxckCUhpRSlGgVTWoBaBZHQKbve5SWJJp1fZQoaAZoCWgPQwjyzwziA91xQJSGlFKUaBVNwwFoFkdApu+E2kzoEHV9lChoBmgJaA9DCJSl1vsNDm5AlIaUUpRoFU1TAmgWR0Cm75HObAk+dX2UKGgGaAloD0MIq8spATFpPECUhpRSlGgVS8toFkdApu/jcAR02nV9lChoBmgJaA9DCJxqLczChW9AlIaUUpRoFU1zAWgWR0Cm8NfeLvTgdX2UKGgGaAloD0MIv4I0YxGdcECUhpRSlGgVTSoDaBZHQKbyM6RyOrB1fZQoaAZoCWgPQwhD/plBvH1wQJSGlFKUaBVNrgFoFkdApvJQVqN6xHV9lChoBmgJaA9DCCqPboTFimdAlIaUUpRoFU3oA2gWR0Cm8okfs/pudX2UKGgGaAloD0MI5s5MMBzccUCUhpRSlGgVTfYBaBZHQKby4T0QK8d1fZQoaAZoCWgPQwjo3VhQmC9yQJSGlFKUaBVN/gFoFkdApvNcSCe2/nV9lChoBmgJaA9DCICAtWrXZ3JAlIaUUpRoFU2HA2gWR0Cm9Dlpwjt5dX2UKGgGaAloD0MIho2yfjPeYECUhpRSlGgVTegDaBZHQKb0omk30f51fZQoaAZoCWgPQwgktybdlkZKQJSGlFKUaBVL0mgWR0Cm9KzByjpLdX2UKGgGaAloD0MIv2A3bFtYbECUhpRSlGgVTXQCaBZHQKb1CSxqwhZ1fZQoaAZoCWgPQwidobjjDadxQJSGlFKUaBVNUANoFkdApvYUUEgW8HV9lChoBmgJaA9DCA73kVsT+WxAlIaUUpRoFU3ZAWgWR0Cm+MP+n62wdX2UKGgGaAloD0MIxSCwcmiBckCUhpRSlGgVTeEBaBZHQKb5O9AX2uh1fZQoaAZoCWgPQwjqkQa3dUZyQJSGlFKUaBVNeAFoFkdApvpmyzHCGnV9lChoBmgJaA9DCFmIDoFj63BAlIaUUpRoFU0iAmgWR0Cm+0nZsbeedX2UKGgGaAloD0MI1hu1wvRNckCUhpRSlGgVTdkBaBZHQKb8gTNdJJ51fZQoaAZoCWgPQwhzgGCOnstwQJSGlFKUaBVNtQFoFkdApv0fcL0BfnV9lChoBmgJaA9DCKPNcW4TCHJAlIaUUpRoFU2cAmgWR0Cm/cig9NeudX2UKGgGaAloD0MI76oHzMOtb0CUhpRSlGgVTasCaBZHQKb+OiblRxd1fZQoaAZoCWgPQwjTE5Z4wOJvQJSGlFKUaBVNHQNoFkdApv93o3aSLnV9lChoBmgJaA9DCKCIRQx7ZXBAlIaUUpRoFU26AWgWR0CnA7tm16VudX2UKGgGaAloD0MIyqZc4R1ccECUhpRSlGgVTbYCaBZHQKcFhnNgSe11fZQoaAZoCWgPQwh6qdiY14RvQJSGlFKUaBVNTwFoFkdApwW5UT+NtXV9lChoBmgJaA9DCM3qHW6Hzm9AlIaUUpRoFU17AmgWR0CnBf6v7m+1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa799d014c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa799d01550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa799d015e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa799d01670>", "_build": "<function ActorCriticPolicy._build at 0x7fa799d01700>", "forward": "<function ActorCriticPolicy.forward at 0x7fa799d01790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa799d01820>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa799d018b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa799d01940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa799d019d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa799d01a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa799cf8c90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671735210948042064, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaGBz2Cqp4/o2tAPgPbBb/zy5897sv+PQAAAAAAAAAAgMVMvSm8MLoyZC27ebzFtmBGhDub+ks6AACAPwAAgD9m5jw99mgcuPu9Z7lPTQS0VbSwu6+6jTgAAIA/AACAP4CHRr3hZIO63liBOHLJkjOIor46EFmWtwAAgD8AAIA/AG0CPXuqmLrKX4E5yzmTNDl/OjrGD5W4AACAPwAAgD+a1RM8FOyiusJOtDtJs+w3xOf1uWpRlTUAAIA/AACAP2aecrzh/Ie6Ig9MuzyfybVmbTE6IDhtOgAAgD8AAIA/M+3xPBReiLoj0gE6/V1dtSTlATtv4xa5AACAPwAAgD+aDTm9SJOcuj+2J7sMhIq21MV/uSh/QToAAIA/AACAPwCYmLzhjoO6pmB9uWaEpDIVPf+65CiROAAAgD8AAIA/M2u+vBR4hrqQ0h+8qe93NtDCnzoiU+O1AACAPwAAgD8zwaY8uBunPHrf8L09mYG+FS20vRN87bkAAAAAAAAAAGZmCTn21Fu6mJuvu5FH/rbHRKK6msLOOgAAgD8AAIA/ZsJQPMNJZLqNoYg61ccBtEnI0ro+hJ65AACAPwAAgD9moA+9UjCGud4j4LpKYiG2oRxBO+YRBzoAAIA/AACAP01wKb1cY0K64Dz2OtbIKDhLV7K56l+VuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGXCWkmU6Y0CUhpRSlIwBbJRN6AOMAXSUR0CRCgzreIl/dX2UKGgGaAloD0MI02ndBjXEcUCUhpRSlGgVTYYDaBZHQJEKDiT+vQp1fZQoaAZoCWgPQwgyPsxetmVnQJSGlFKUaBVN6ANoFkdAkQ50BKcurnV9lChoBmgJaA9DCM4ZUdobCGRAlIaUUpRoFU3oA2gWR0CRDsGQ0XP7dX2UKGgGaAloD0MI66urAjU4ZUCUhpRSlGgVTegDaBZHQJEPD/Pw/gR1fZQoaAZoCWgPQwgFTraBO3FjQJSGlFKUaBVN6ANoFkdAkRHeGTLW7XV9lChoBmgJaA9DCE8eFmpNmWBAlIaUUpRoFU3oA2gWR0CRE9WmP5pKdX2UKGgGaAloD0MIbAVNSyzAaECUhpRSlGgVTegDaBZHQJEVzA1vVEx1fZQoaAZoCWgPQwii0LLuH4NjQJSGlFKUaBVN6ANoFkdAkRYbilzltHV9lChoBmgJaA9DCMWtghjozWNAlIaUUpRoFU3oA2gWR0CRIgqagElmdX2UKGgGaAloD0MI7uh/uRaSYkCUhpRSlGgVTegDaBZHQJErqL5ylvZ1fZQoaAZoCWgPQwhSt7OvvPNsQJSGlFKUaBVNBAJoFkdAkS67yhBZ6nV9lChoBmgJaA9DCLyyCwbXbGZAlIaUUpRoFU3oA2gWR0CRMKoWYWtVdX2UKGgGaAloD0MI7UW0HVN3Y0CUhpRSlGgVTegDaBZHQJE04srd30R1fZQoaAZoCWgPQwg2A1yQLQBmQJSGlFKUaBVN6ANoFkdAkUsjC+De03V9lChoBmgJaA9DCMRCrWneMmVAlIaUUpRoFU3oA2gWR0CRS3TdtVJddX2UKGgGaAloD0MIMIDwocQbZECUhpRSlGgVTegDaBZHQJFO5hnanJl1fZQoaAZoCWgPQwgcJET5Ag5hQJSGlFKUaBVN6ANoFkdAkVceRT0g83V9lChoBmgJaA9DCLtGy4GeKmZAlIaUUpRoFU3oA2gWR0CRVx8EV32VdX2UKGgGaAloD0MIceZXc4CGXkCUhpRSlGgVTegDaBZHQJFbLU1AJLN1fZQoaAZoCWgPQwiCOuXRDUpjQJSGlFKUaBVN6ANoFkdAkVu1xCIDYHV9lChoBmgJaA9DCAt6bwyBkmRAlIaUUpRoFU3oA2gWR0CRXo5S3soldX2UKGgGaAloD0MIuYlamlu2ZUCUhpRSlGgVTegDaBZHQJFgkjAzpHJ1fZQoaAZoCWgPQwilSSnodllkQJSGlFKUaBVN6ANoFkdAkWKITK1XvHV9lChoBmgJaA9DCLg81oyMnmBAlIaUUpRoFU3oA2gWR0CRYtlGPPszdX2UKGgGaAloD0MI8piByvi3ZUCUhpRSlGgVTegDaBZHQJFvTKOktVd1fZQoaAZoCWgPQwjiWu1hL8NhQJSGlFKUaBVN6ANoFkdAkXmATyrgfnV9lChoBmgJaA9DCB5wXTEjbGRAlIaUUpRoFU3oA2gWR0CRfQ814xDcdX2UKGgGaAloD0MIvHX+7TLpYECUhpRSlGgVTegDaBZHQJF/Q4yXUpd1fZQoaAZoCWgPQwjerMH7KqBnQJSGlFKUaBVN6ANoFkdAkYQpAyEcsHV9lChoBmgJaA9DCCqLwi6KbkNAlIaUUpRoFUuZaBZHQJGdHMotthx1fZQoaAZoCWgPQwgDste7v2RjQJSGlFKUaBVN6ANoFkdAkaC/bwjMV3V9lChoBmgJaA9DCN6NBYXBJGZAlIaUUpRoFU3oA2gWR0CRoUK0UoKEdX2UKGgGaAloD0MIQ46tZ4j6YUCUhpRSlGgVTegDaBZHQJGmw4DLbHp1fZQoaAZoCWgPQwjltKfknOdiQJSGlFKUaBVN6ANoFkdAkbAJP2wmmnV9lChoBmgJaA9DCA/UKY9uJWZAlIaUUpRoFU3oA2gWR0CRsAwbVBlddX2UKGgGaAloD0MIaJYEqCmkZUCUhpRSlGgVTegDaBZHQJG0LeANG3F1fZQoaAZoCWgPQwiMS1Xa4stdQJSGlFKUaBVN6ANoFkdAkbSxVp9JBnV9lChoBmgJaA9DCEBpqFHIYWpAlIaUUpRoFU3oA2gWR0CRt2S9ugpSdX2UKGgGaAloD0MIog3ABsS8ZECUhpRSlGgVTegDaBZHQJG5TXNC7bt1fZQoaAZoCWgPQwhvEK0V7fdkQJSGlFKUaBVN6ANoFkdAkbs0BwMpgHV9lChoBmgJaA9DCCmWW1oNHWhAlIaUUpRoFU3oA2gWR0CRu3+/xlQNdX2UKGgGaAloD0MI0GIpkq/kZECUhpRSlGgVTegDaBZHQJHG7reIl+p1fZQoaAZoCWgPQwjg88MIYdVwQJSGlFKUaBVNjQJoFkdAkcpc/+sHSnV9lChoBmgJaA9DCCBfQgWHPmNAlIaUUpRoFU3oA2gWR0CRz6D6nBLxdX2UKGgGaAloD0MIdO/hkuPBZECUhpRSlGgVTegDaBZHQJHSdd/rjYJ1fZQoaAZoCWgPQwjpf7kWrYZoQJSGlFKUaBVN6ANoFkdAkdil05lvqHV9lChoBmgJaA9DCOUK73IRd2lAlIaUUpRoFU3oA2gWR0CR3fm29crzdX2UKGgGaAloD0MIaD18mSjTY0CUhpRSlGgVTegDaBZHQJHvHkOqebx1fZQoaAZoCWgPQwhOmZtvxO5mQJSGlFKUaBVN6ANoFkdAkfJ420iQk3V9lChoBmgJaA9DCPjGEAAcrWdAlIaUUpRoFU3oA2gWR0CR+mJD3M6jdX2UKGgGaAloD0MI6EzaVF2UZECUhpRSlGgVTegDaBZHQJH6Yu6ErXl1fZQoaAZoCWgPQwjzrQ/rDWtlQJSGlFKUaBVN6ANoFkdAkf5joEB8yHV9lChoBmgJaA9DCLAD54woLGlAlIaUUpRoFU3oA2gWR0CR/vqkdmxudX2UKGgGaAloD0MIfNRfr7C8YUCUhpRSlGgVTegDaBZHQJIB85imVJN1fZQoaAZoCWgPQwgdPX5vU2plQJSGlFKUaBVN6ANoFkdAkgQKGlANX3V9lChoBmgJaA9DCMIzoUligWZAlIaUUpRoFU3oA2gWR0CSBhPEsJ6ZdX2UKGgGaAloD0MIn8ppT0mPYkCUhpRSlGgVTegDaBZHQJIGcjps41h1fZQoaAZoCWgPQwg25J8ZxMhxQJSGlFKUaBVL+GgWR0CSDLt+1Bt2dX2UKGgGaAloD0MIowT9hZ56ZkCUhpRSlGgVTegDaBZHQJISJdD6WPd1fZQoaAZoCWgPQwhweawZGWhlQJSGlFKUaBVN6ANoFkdAkhXBnrY5DXV9lChoBmgJaA9DCLmmQGbn2GdAlIaUUpRoFU3oA2gWR0CSG49B8hLXdX2UKGgGaAloD0MIXJGYoAYeaECUhpRSlGgVTegDaBZHQJIeuMzdk8R1fZQoaAZoCWgPQwjvdVJfFgRiQJSGlFKUaBVN6ANoFkdAkiVmVRk3CXV9lChoBmgJaA9DCIi4OZWM72JAlIaUUpRoFU3oA2gWR0CSK3D15B1LdX2UKGgGaAloD0MI8bp+wW6zY0CUhpRSlGgVTegDaBZHQJI805ggHNZ1fZQoaAZoCWgPQwhqwvaTscBhQJSGlFKUaBVN6ANoFkdAkkByEQGwA3V9lChoBmgJaA9DCO/IWG3+eVBAlIaUUpRoFUvXaBZHQJJIGXjU/fR1fZQoaAZoCWgPQwgN/+kGiodhQJSGlFKUaBVN6ANoFkdAkkkYhIOH33V9lChoBmgJaA9DCBkCgGPPEmhAlIaUUpRoFU3oA2gWR0CSSRnA6+36dX2UKGgGaAloD0MISPyKNRxCckCUhpRSlGgVTSUCaBZHQJJJeLAHmih1fZQoaAZoCWgPQwgkXp7OlXNkQJSGlFKUaBVN6ANoFkdAkk1YkE9t/HV9lChoBmgJaA9DCDRN2H6yRmhAlIaUUpRoFU3oA2gWR0CST+u1ndwedX2UKGgGaAloD0MIezNqvsoiY0CUhpRSlGgVTegDaBZHQJJRzNPgvUV1fZQoaAZoCWgPQwg2yY/4lfluQJSGlFKUaBVNfwFoFkdAklNuevpyInV9lChoBmgJaA9DCDyFXKlnomVAlIaUUpRoFU3oA2gWR0CSU6PikwevdX2UKGgGaAloD0MI7ISX4NT7YUCUhpRSlGgVTegDaBZHQJJT4/t6X0J1fZQoaAZoCWgPQwhVvfxOk3pTQJSGlFKUaBVL2WgWR0CSWDYzBRAKdX2UKGgGaAloD0MI5QzFHe+iYUCUhpRSlGgVTegDaBZHQJJZUR15jYt1fZQoaAZoCWgPQwiYh0z5kAxlQJSGlFKUaBVN6ANoFkdAkl42yxA0K3V9lChoBmgJaA9DCIrmASxyvmVAlIaUUpRoFU3oA2gWR0CSZpq59Vm0dX2UKGgGaAloD0MIObaeIZzeZkCUhpRSlGgVTegDaBZHQJJpiPjn3cp1fZQoaAZoCWgPQwjSb18HzrZlQJSGlFKUaBVN6ANoFkdAkm/uF6AvtnV9lChoBmgJaA9DCDLmriVkdWpAlIaUUpRoFU3oA2gWR0CSi0wcHWz4dX2UKGgGaAloD0MIPX0E/rC5cUCUhpRSlGgVTZIDaBZHQJKOrirDIil1fZQoaAZoCWgPQwhyiLg5lShlQJSGlFKUaBVN6ANoFkdAkpOEdzXBg3V9lChoBmgJaA9DCEVj7e/s4GhAlIaUUpRoFU3oA2gWR0CSlLJ40Mw2dX2UKGgGaAloD0MIXXAGfz8TZkCUhpRSlGgVTegDaBZHQJKVECgbp/x1fZQoaAZoCWgPQwitUQ/RqI9zQJSGlFKUaBVNfgNoFkdAkpqa5byH23V9lChoBmgJaA9DCADICRPGmWdAlIaUUpRoFU3oA2gWR0CSnHc3VCokdX2UKGgGaAloD0MIBW9Io0JucECUhpRSlGgVTVoDaBZHQJKeFgogFHJ1fZQoaAZoCWgPQwhhi90+qytpQJSGlFKUaBVN6ANoFkdAkp6kRFqi5HV9lChoBmgJaA9DCNOImX0e9V9AlIaUUpRoFU3oA2gWR0CSoIpb2USqdX2UKGgGaAloD0MIYOl8eBbnYkCUhpRSlGgVTegDaBZHQJKgxVPva111fZQoaAZoCWgPQwj4Nv3ZD7FlQJSGlFKUaBVN6ANoFkdAkqfBVdX1anV9lChoBmgJaA9DCNC0xMpouGBAlIaUUpRoFU3oA2gWR0CSrZvqkdmydX2UKGgGaAloD0MIlBPtKiQdZUCUhpRSlGgVTegDaBZHQJK3IsFt8/l1fZQoaAZoCWgPQwhcdoh/WFdoQJSGlFKUaBVN6ANoFkdAkrpkz9CNTHV9lChoBmgJaA9DCMQnnUiw3GdAlIaUUpRoFU3oA2gWR0CSwSeTmnwYdX2UKGgGaAloD0MI0xOWeACZckCUhpRSlGgVTccCaBZHQJLLST3Zf2N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cb90990d2158fa7907de28ccd97228b244433a54f3bf2f255e912f0722116aa
|
3 |
+
size 146703
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +69,7 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa799d014c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa799d01550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa799d015e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa799d01670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa799d01700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa799d01790>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa799d01820>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa799d018b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa799d01940>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa799d019d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa799d01a60>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa799cf8c90>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1671735210948042064,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaGBz2Cqp4/o2tAPgPbBb/zy5897sv+PQAAAAAAAAAAgMVMvSm8MLoyZC27ebzFtmBGhDub+ks6AACAPwAAgD9m5jw99mgcuPu9Z7lPTQS0VbSwu6+6jTgAAIA/AACAP4CHRr3hZIO63liBOHLJkjOIor46EFmWtwAAgD8AAIA/AG0CPXuqmLrKX4E5yzmTNDl/OjrGD5W4AACAPwAAgD+a1RM8FOyiusJOtDtJs+w3xOf1uWpRlTUAAIA/AACAP2aecrzh/Ie6Ig9MuzyfybVmbTE6IDhtOgAAgD8AAIA/M+3xPBReiLoj0gE6/V1dtSTlATtv4xa5AACAPwAAgD+aDTm9SJOcuj+2J7sMhIq21MV/uSh/QToAAIA/AACAPwCYmLzhjoO6pmB9uWaEpDIVPf+65CiROAAAgD8AAIA/M2u+vBR4hrqQ0h+8qe93NtDCnzoiU+O1AACAPwAAgD8zwaY8uBunPHrf8L09mYG+FS20vRN87bkAAAAAAAAAAGZmCTn21Fu6mJuvu5FH/rbHRKK6msLOOgAAgD8AAIA/ZsJQPMNJZLqNoYg61ccBtEnI0ro+hJ65AACAPwAAgD9moA+9UjCGud4j4LpKYiG2oRxBO+YRBzoAAIA/AACAP01wKb1cY0K64Dz2OtbIKDhLV7K56l+VuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGXCWkmU6Y0CUhpRSlIwBbJRN6AOMAXSUR0CRCgzreIl/dX2UKGgGaAloD0MI02ndBjXEcUCUhpRSlGgVTYYDaBZHQJEKDiT+vQp1fZQoaAZoCWgPQwgyPsxetmVnQJSGlFKUaBVN6ANoFkdAkQ50BKcurnV9lChoBmgJaA9DCM4ZUdobCGRAlIaUUpRoFU3oA2gWR0CRDsGQ0XP7dX2UKGgGaAloD0MI66urAjU4ZUCUhpRSlGgVTegDaBZHQJEPD/Pw/gR1fZQoaAZoCWgPQwgFTraBO3FjQJSGlFKUaBVN6ANoFkdAkRHeGTLW7XV9lChoBmgJaA9DCE8eFmpNmWBAlIaUUpRoFU3oA2gWR0CRE9WmP5pKdX2UKGgGaAloD0MIbAVNSyzAaECUhpRSlGgVTegDaBZHQJEVzA1vVEx1fZQoaAZoCWgPQwii0LLuH4NjQJSGlFKUaBVN6ANoFkdAkRYbilzltHV9lChoBmgJaA9DCMWtghjozWNAlIaUUpRoFU3oA2gWR0CRIgqagElmdX2UKGgGaAloD0MI7uh/uRaSYkCUhpRSlGgVTegDaBZHQJErqL5ylvZ1fZQoaAZoCWgPQwhSt7OvvPNsQJSGlFKUaBVNBAJoFkdAkS67yhBZ6nV9lChoBmgJaA9DCLyyCwbXbGZAlIaUUpRoFU3oA2gWR0CRMKoWYWtVdX2UKGgGaAloD0MI7UW0HVN3Y0CUhpRSlGgVTegDaBZHQJE04srd30R1fZQoaAZoCWgPQwg2A1yQLQBmQJSGlFKUaBVN6ANoFkdAkUsjC+De03V9lChoBmgJaA9DCMRCrWneMmVAlIaUUpRoFU3oA2gWR0CRS3TdtVJddX2UKGgGaAloD0MIMIDwocQbZECUhpRSlGgVTegDaBZHQJFO5hnanJl1fZQoaAZoCWgPQwgcJET5Ag5hQJSGlFKUaBVN6ANoFkdAkVceRT0g83V9lChoBmgJaA9DCLtGy4GeKmZAlIaUUpRoFU3oA2gWR0CRVx8EV32VdX2UKGgGaAloD0MIceZXc4CGXkCUhpRSlGgVTegDaBZHQJFbLU1AJLN1fZQoaAZoCWgPQwiCOuXRDUpjQJSGlFKUaBVN6ANoFkdAkVu1xCIDYHV9lChoBmgJaA9DCAt6bwyBkmRAlIaUUpRoFU3oA2gWR0CRXo5S3soldX2UKGgGaAloD0MIuYlamlu2ZUCUhpRSlGgVTegDaBZHQJFgkjAzpHJ1fZQoaAZoCWgPQwilSSnodllkQJSGlFKUaBVN6ANoFkdAkWKITK1XvHV9lChoBmgJaA9DCLg81oyMnmBAlIaUUpRoFU3oA2gWR0CRYtlGPPszdX2UKGgGaAloD0MI8piByvi3ZUCUhpRSlGgVTegDaBZHQJFvTKOktVd1fZQoaAZoCWgPQwjiWu1hL8NhQJSGlFKUaBVN6ANoFkdAkXmATyrgfnV9lChoBmgJaA9DCB5wXTEjbGRAlIaUUpRoFU3oA2gWR0CRfQ814xDcdX2UKGgGaAloD0MIvHX+7TLpYECUhpRSlGgVTegDaBZHQJF/Q4yXUpd1fZQoaAZoCWgPQwjerMH7KqBnQJSGlFKUaBVN6ANoFkdAkYQpAyEcsHV9lChoBmgJaA9DCCqLwi6KbkNAlIaUUpRoFUuZaBZHQJGdHMotthx1fZQoaAZoCWgPQwgDste7v2RjQJSGlFKUaBVN6ANoFkdAkaC/bwjMV3V9lChoBmgJaA9DCN6NBYXBJGZAlIaUUpRoFU3oA2gWR0CRoUK0UoKEdX2UKGgGaAloD0MIQ46tZ4j6YUCUhpRSlGgVTegDaBZHQJGmw4DLbHp1fZQoaAZoCWgPQwjltKfknOdiQJSGlFKUaBVN6ANoFkdAkbAJP2wmmnV9lChoBmgJaA9DCA/UKY9uJWZAlIaUUpRoFU3oA2gWR0CRsAwbVBlddX2UKGgGaAloD0MIaJYEqCmkZUCUhpRSlGgVTegDaBZHQJG0LeANG3F1fZQoaAZoCWgPQwiMS1Xa4stdQJSGlFKUaBVN6ANoFkdAkbSxVp9JBnV9lChoBmgJaA9DCEBpqFHIYWpAlIaUUpRoFU3oA2gWR0CRt2S9ugpSdX2UKGgGaAloD0MIog3ABsS8ZECUhpRSlGgVTegDaBZHQJG5TXNC7bt1fZQoaAZoCWgPQwhvEK0V7fdkQJSGlFKUaBVN6ANoFkdAkbs0BwMpgHV9lChoBmgJaA9DCCmWW1oNHWhAlIaUUpRoFU3oA2gWR0CRu3+/xlQNdX2UKGgGaAloD0MI0GIpkq/kZECUhpRSlGgVTegDaBZHQJHG7reIl+p1fZQoaAZoCWgPQwjg88MIYdVwQJSGlFKUaBVNjQJoFkdAkcpc/+sHSnV9lChoBmgJaA9DCCBfQgWHPmNAlIaUUpRoFU3oA2gWR0CRz6D6nBLxdX2UKGgGaAloD0MIdO/hkuPBZECUhpRSlGgVTegDaBZHQJHSdd/rjYJ1fZQoaAZoCWgPQwjpf7kWrYZoQJSGlFKUaBVN6ANoFkdAkdil05lvqHV9lChoBmgJaA9DCOUK73IRd2lAlIaUUpRoFU3oA2gWR0CR3fm29crzdX2UKGgGaAloD0MIaD18mSjTY0CUhpRSlGgVTegDaBZHQJHvHkOqebx1fZQoaAZoCWgPQwhOmZtvxO5mQJSGlFKUaBVN6ANoFkdAkfJ420iQk3V9lChoBmgJaA9DCPjGEAAcrWdAlIaUUpRoFU3oA2gWR0CR+mJD3M6jdX2UKGgGaAloD0MI6EzaVF2UZECUhpRSlGgVTegDaBZHQJH6Yu6ErXl1fZQoaAZoCWgPQwjzrQ/rDWtlQJSGlFKUaBVN6ANoFkdAkf5joEB8yHV9lChoBmgJaA9DCLAD54woLGlAlIaUUpRoFU3oA2gWR0CR/vqkdmxudX2UKGgGaAloD0MIfNRfr7C8YUCUhpRSlGgVTegDaBZHQJIB85imVJN1fZQoaAZoCWgPQwgdPX5vU2plQJSGlFKUaBVN6ANoFkdAkgQKGlANX3V9lChoBmgJaA9DCMIzoUligWZAlIaUUpRoFU3oA2gWR0CSBhPEsJ6ZdX2UKGgGaAloD0MIn8ppT0mPYkCUhpRSlGgVTegDaBZHQJIGcjps41h1fZQoaAZoCWgPQwg25J8ZxMhxQJSGlFKUaBVL+GgWR0CSDLt+1Bt2dX2UKGgGaAloD0MIowT9hZ56ZkCUhpRSlGgVTegDaBZHQJISJdD6WPd1fZQoaAZoCWgPQwhweawZGWhlQJSGlFKUaBVN6ANoFkdAkhXBnrY5DXV9lChoBmgJaA9DCLmmQGbn2GdAlIaUUpRoFU3oA2gWR0CSG49B8hLXdX2UKGgGaAloD0MIXJGYoAYeaECUhpRSlGgVTegDaBZHQJIeuMzdk8R1fZQoaAZoCWgPQwjvdVJfFgRiQJSGlFKUaBVN6ANoFkdAkiVmVRk3CXV9lChoBmgJaA9DCIi4OZWM72JAlIaUUpRoFU3oA2gWR0CSK3D15B1LdX2UKGgGaAloD0MI8bp+wW6zY0CUhpRSlGgVTegDaBZHQJI805ggHNZ1fZQoaAZoCWgPQwhqwvaTscBhQJSGlFKUaBVN6ANoFkdAkkByEQGwA3V9lChoBmgJaA9DCO/IWG3+eVBAlIaUUpRoFUvXaBZHQJJIGXjU/fR1fZQoaAZoCWgPQwgN/+kGiodhQJSGlFKUaBVN6ANoFkdAkkkYhIOH33V9lChoBmgJaA9DCBkCgGPPEmhAlIaUUpRoFU3oA2gWR0CSSRnA6+36dX2UKGgGaAloD0MISPyKNRxCckCUhpRSlGgVTSUCaBZHQJJJeLAHmih1fZQoaAZoCWgPQwgkXp7OlXNkQJSGlFKUaBVN6ANoFkdAkk1YkE9t/HV9lChoBmgJaA9DCDRN2H6yRmhAlIaUUpRoFU3oA2gWR0CST+u1ndwedX2UKGgGaAloD0MIezNqvsoiY0CUhpRSlGgVTegDaBZHQJJRzNPgvUV1fZQoaAZoCWgPQwg2yY/4lfluQJSGlFKUaBVNfwFoFkdAklNuevpyInV9lChoBmgJaA9DCDyFXKlnomVAlIaUUpRoFU3oA2gWR0CSU6PikwevdX2UKGgGaAloD0MI7ISX4NT7YUCUhpRSlGgVTegDaBZHQJJT4/t6X0J1fZQoaAZoCWgPQwhVvfxOk3pTQJSGlFKUaBVL2WgWR0CSWDYzBRAKdX2UKGgGaAloD0MI5QzFHe+iYUCUhpRSlGgVTegDaBZHQJJZUR15jYt1fZQoaAZoCWgPQwiYh0z5kAxlQJSGlFKUaBVN6ANoFkdAkl42yxA0K3V9lChoBmgJaA9DCIrmASxyvmVAlIaUUpRoFU3oA2gWR0CSZpq59Vm0dX2UKGgGaAloD0MIObaeIZzeZkCUhpRSlGgVTegDaBZHQJJpiPjn3cp1fZQoaAZoCWgPQwjSb18HzrZlQJSGlFKUaBVN6ANoFkdAkm/uF6AvtnV9lChoBmgJaA9DCDLmriVkdWpAlIaUUpRoFU3oA2gWR0CSi0wcHWz4dX2UKGgGaAloD0MIPX0E/rC5cUCUhpRSlGgVTZIDaBZHQJKOrirDIil1fZQoaAZoCWgPQwhyiLg5lShlQJSGlFKUaBVN6ANoFkdAkpOEdzXBg3V9lChoBmgJaA9DCEVj7e/s4GhAlIaUUpRoFU3oA2gWR0CSlLJ40Mw2dX2UKGgGaAloD0MIXXAGfz8TZkCUhpRSlGgVTegDaBZHQJKVECgbp/x1fZQoaAZoCWgPQwitUQ/RqI9zQJSGlFKUaBVNfgNoFkdAkpqa5byH23V9lChoBmgJaA9DCADICRPGmWdAlIaUUpRoFU3oA2gWR0CSnHc3VCokdX2UKGgGaAloD0MIBW9Io0JucECUhpRSlGgVTVoDaBZHQJKeFgogFHJ1fZQoaAZoCWgPQwhhi90+qytpQJSGlFKUaBVN6ANoFkdAkp6kRFqi5HV9lChoBmgJaA9DCNOImX0e9V9AlIaUUpRoFU3oA2gWR0CSoIpb2USqdX2UKGgGaAloD0MIYOl8eBbnYkCUhpRSlGgVTegDaBZHQJKgxVPva111fZQoaAZoCWgPQwj4Nv3ZD7FlQJSGlFKUaBVN6ANoFkdAkqfBVdX1anV9lChoBmgJaA9DCNC0xMpouGBAlIaUUpRoFU3oA2gWR0CSrZvqkdmydX2UKGgGaAloD0MIlBPtKiQdZUCUhpRSlGgVTegDaBZHQJK3IsFt8/l1fZQoaAZoCWgPQwhcdoh/WFdoQJSGlFKUaBVN6ANoFkdAkrpkz9CNTHV9lChoBmgJaA9DCMQnnUiw3GdAlIaUUpRoFU3oA2gWR0CSwSeTmnwYdX2UKGgGaAloD0MI0xOWeACZckCUhpRSlGgVTccCaBZHQJLLST3Zf2N1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ced75015d8a0f1ae6b08de16ef768653d63616aa41649ae45df5de12b77cd16
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94a89da9b6dd15b7ad9ec2f12077aec8b7b301cdb18c21d5de1eed41022d9942
|
3 |
+
size 43073
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
|
2 |
Python: 3.8.16
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu116
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.8.16
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: False
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 261.3205212603639, "std_reward": 37.90084872432104, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T19:15:56.222420"}
|