Commit
7c3e4da
1 Parent(s): 97f5d32

Adding Evaluation Results (#1)

Browse files

- Adding Evaluation Results (8ad28ce9b2987b5735f21ad678eeca617c1a5f55)


Co-authored-by: Open LLM Leaderboard PR Bot <[email protected]>

Files changed (1) hide show
  1. README.md +123 -15
README.md CHANGED
@@ -1,12 +1,11 @@
1
  ---
2
- License: agpl-3.0
3
- Language:
4
- - En
5
- Pipeline_tag: text-generation
6
- Base_model: arcee-ai/Llama-3.1-SuperNova-Lite
7
- Tags:
8
- - Chat
9
  license: agpl-3.0
 
 
 
 
10
  datasets:
11
  - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
12
  - Nitral-AI/Cybersecurity-ShareGPT
@@ -18,15 +17,111 @@ datasets:
18
  - anthracite-org/kalo-opus-instruct-22k-no-refusal
19
  - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
20
  - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
21
- - anthracite-org/kalo_misc_part2
22
  - Nitral-AI/Creative_Writing-ShareGPT
23
  - NewEden/Gryphe-Sonnet3.5-Charcard-Roleplay-unfiltered
24
- tags:
25
- - chat
26
- language:
27
- - en
28
- base_model:
29
- - arcee-ai/Llama-3.1-SuperNova-Lite
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ---
31
 
32
  ![](https://huggingface.co/Delta-Vector/Baldur-8B/resolve/main/Baldur.jpg)
@@ -211,4 +306,17 @@ Thank you to [Lucy Knada](https://huggingface.co/lucyknada), [Kalomaze](https://
211
  ## Training
212
  The training was done for 2 epochs. I used 2 x [RTX 6000s](https://www.nvidia.com/en-us/design-visualization/rtx-6000/) GPUs graciously provided by [Kubernetes Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model.
213
 
214
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
 
 
 
 
 
4
  license: agpl-3.0
5
+ tags:
6
+ - chat
7
+ base_model:
8
+ - arcee-ai/Llama-3.1-SuperNova-Lite
9
  datasets:
10
  - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
11
  - Nitral-AI/Cybersecurity-ShareGPT
 
17
  - anthracite-org/kalo-opus-instruct-22k-no-refusal
18
  - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
19
  - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
20
+ - anthracite-org/kalo_misc_part2
21
  - Nitral-AI/Creative_Writing-ShareGPT
22
  - NewEden/Gryphe-Sonnet3.5-Charcard-Roleplay-unfiltered
23
+ License: agpl-3.0
24
+ Language:
25
+ - En
26
+ Pipeline_tag: text-generation
27
+ Base_model: arcee-ai/Llama-3.1-SuperNova-Lite
28
+ Tags:
29
+ - Chat
30
+ model-index:
31
+ - name: Baldur-8B
32
+ results:
33
+ - task:
34
+ type: text-generation
35
+ name: Text Generation
36
+ dataset:
37
+ name: IFEval (0-Shot)
38
+ type: HuggingFaceH4/ifeval
39
+ args:
40
+ num_few_shot: 0
41
+ metrics:
42
+ - type: inst_level_strict_acc and prompt_level_strict_acc
43
+ value: 47.82
44
+ name: strict accuracy
45
+ source:
46
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Baldur-8B
47
+ name: Open LLM Leaderboard
48
+ - task:
49
+ type: text-generation
50
+ name: Text Generation
51
+ dataset:
52
+ name: BBH (3-Shot)
53
+ type: BBH
54
+ args:
55
+ num_few_shot: 3
56
+ metrics:
57
+ - type: acc_norm
58
+ value: 32.54
59
+ name: normalized accuracy
60
+ source:
61
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Baldur-8B
62
+ name: Open LLM Leaderboard
63
+ - task:
64
+ type: text-generation
65
+ name: Text Generation
66
+ dataset:
67
+ name: MATH Lvl 5 (4-Shot)
68
+ type: hendrycks/competition_math
69
+ args:
70
+ num_few_shot: 4
71
+ metrics:
72
+ - type: exact_match
73
+ value: 12.61
74
+ name: exact match
75
+ source:
76
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Baldur-8B
77
+ name: Open LLM Leaderboard
78
+ - task:
79
+ type: text-generation
80
+ name: Text Generation
81
+ dataset:
82
+ name: GPQA (0-shot)
83
+ type: Idavidrein/gpqa
84
+ args:
85
+ num_few_shot: 0
86
+ metrics:
87
+ - type: acc_norm
88
+ value: 6.94
89
+ name: acc_norm
90
+ source:
91
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Baldur-8B
92
+ name: Open LLM Leaderboard
93
+ - task:
94
+ type: text-generation
95
+ name: Text Generation
96
+ dataset:
97
+ name: MuSR (0-shot)
98
+ type: TAUR-Lab/MuSR
99
+ args:
100
+ num_few_shot: 0
101
+ metrics:
102
+ - type: acc_norm
103
+ value: 14.01
104
+ name: acc_norm
105
+ source:
106
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Baldur-8B
107
+ name: Open LLM Leaderboard
108
+ - task:
109
+ type: text-generation
110
+ name: Text Generation
111
+ dataset:
112
+ name: MMLU-PRO (5-shot)
113
+ type: TIGER-Lab/MMLU-Pro
114
+ config: main
115
+ split: test
116
+ args:
117
+ num_few_shot: 5
118
+ metrics:
119
+ - type: acc
120
+ value: 29.49
121
+ name: accuracy
122
+ source:
123
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Delta-Vector/Baldur-8B
124
+ name: Open LLM Leaderboard
125
  ---
126
 
127
  ![](https://huggingface.co/Delta-Vector/Baldur-8B/resolve/main/Baldur.jpg)
 
306
  ## Training
307
  The training was done for 2 epochs. I used 2 x [RTX 6000s](https://www.nvidia.com/en-us/design-visualization/rtx-6000/) GPUs graciously provided by [Kubernetes Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model.
308
 
309
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
310
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
311
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Delta-Vector__Baldur-8B)
312
+
313
+ | Metric |Value|
314
+ |-------------------|----:|
315
+ |Avg. |23.90|
316
+ |IFEval (0-Shot) |47.82|
317
+ |BBH (3-Shot) |32.54|
318
+ |MATH Lvl 5 (4-Shot)|12.61|
319
+ |GPQA (0-shot) | 6.94|
320
+ |MuSR (0-shot) |14.01|
321
+ |MMLU-PRO (5-shot) |29.49|
322
+