## model base_model: /home/quixi/Mango/models/Sao10K_Llama-3.3-70B-Vulpecula-r1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer ## qlora load_in_8bit: false load_in_4bit: True strict: false ## Lora adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 64 lora_dropout: 0.0 peft_use_rslora: true lora_target_modules: lora_mlp_kernel: false lora_qkv_kernel: false lora_o_kernel: false lora_target_linear: true # - gate_proj # - down_proj # - up_proj # - q_proj # - v_proj # - k_proj # - o_proj ## data datasets: - path: Delta-Vector/Orion-Books-V2-ShareGPT type: dan-chat-advanced-llama3 - path: PocketDoc/Dans-Prosemaxx-RepRemover-1 type: dan-chat-advanced-llama3 - path: Delta-Vector/Orion-Personamaxx-RP type: dan-chat-advanced-llama3 shuffle_merged_datasets: true dataset_prepared_path: base-dataset_prepared val_set_size: 0.0 output_dir: ./SFT-Vulpecula ## Liger + CCE plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: false cut_cross_entropy: true ## CTX settings sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true ## WandB wandb_project: Francois wandb_entity: wandb_watch: wandb_name: wandb_log_model: ## evals #evals_per_epoch: 4 #eval_table_size: #eval_max_new_tokens: 128 ## hparams gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_torch_fused #optim_args: proj=random,rank=1,scale=128.0,scale_type=tensor,update_proj_gap=200 #optim_target_modules: # - .*.attn.* # - .*.mlp.* lr_scheduler: cosine learning_rate: 1e-5 warmup_steps: 50 weight_decay: 0.0025 ## max grad norm max_grad_norm: 0.001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: offload early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: saves_per_epoch: 2 debug: #deepspeed: ./deepspeed_configs/zero3_bf16_cpuoffload_all.json #fsdp: #fsdp_config: fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|>