Delta-Vector commited on
Commit
eca4900
·
verified ·
1 Parent(s): 3549247

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Glm4ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151343,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 6144,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 23040,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "glm4",
15
+ "num_attention_heads": 48,
16
+ "num_hidden_layers": 61,
17
+ "num_key_value_heads": 2,
18
+ "pad_token_id": 151329,
19
+ "partial_rotary_factor": 0.5,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_theta": 10000.0,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.51.3",
25
+ "use_cache": false,
26
+ "vocab_size": 151345
27
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "do_sample": true,
4
+ "eos_token_id": 151329,
5
+ "pad_token_id": 151329,
6
+ "transformers_version": "4.51.3",
7
+ "use_cache": false
8
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step607
model-00001-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aab316f9baefe7bff8da75f183d83f3c0268df6db16f77e5e7c5a64667ebe13e
3
+ size 4961566608
model-00002-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cd838d40b9b03b86b206bed89b2ba1038ca13e65b954150c45a61f4be034166
3
+ size 4951627112
model-00003-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3904b4f70d4add4ec34a254170ae530b11884e616d35de9bbcbd7173f9060339
3
+ size 4750251160
model-00004-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a18879892ebf94ea5201fa62a4b92525d9444d263e356b542d1bd544480a811d
3
+ size 4467185280
model-00005-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c58b6b007deee840748b5963578eec7398566804425b173de4001cc912ce56f8
3
+ size 4957918856
model-00006-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3d8457b43086674b331913bccf45b6802959a283b25e4370fa2a6b1e9ec237d
3
+ size 4951627160
model-00007-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5fa614091df51c2e63565bae18250a09925d9b6516f85c0d1f8194d0cc5262a
3
+ size 4750251184
model-00008-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:651bf3b186879ee819517ec66d6e208fdd36a000be3719735102dc135aff9b20
3
+ size 4467185280
model-00009-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf15340c358107996b878a9534fa015ac85f976195a5b9ce5e1612bc1728ec28
3
+ size 4957918856
model-00010-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:050cf96beffb07a51e5438c400613ff8a25c70e0a6a24cd89db3c86d82b6bdcf
3
+ size 4951627160
model-00011-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:943cc9f80c479ce9ba65005f35ea1dea0ba91466c94a4c7ca8b537845ec6dbea
3
+ size 4750251184
model-00012-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:294519f6aa4f13786267aef40ed0bc15d5de712c45e04bfb5a8a34951ae31fc4
3
+ size 4467185280
model-00013-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5931cd53c21e5d40f6bcdf29d58d07ca56dd9e44790f4a576bc02be41ca54680
3
+ size 4957918856
model-00014-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cc054e14f5c330c136f9ab7b8990cebb721dd6e48fa366bbb6420052da40fb6
3
+ size 2784633872
model.safetensors.index.json ADDED
@@ -0,0 +1,620 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 65127075840
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00014-of-00014.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00014.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00014.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
12
+ "model.layers.0.post_mlp_layernorm.weight": "model-00001-of-00014.safetensors",
13
+ "model.layers.0.post_self_attn_layernorm.weight": "model-00001-of-00014.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
20
+ "model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00014.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
22
+ "model.layers.1.post_mlp_layernorm.weight": "model-00001-of-00014.safetensors",
23
+ "model.layers.1.post_self_attn_layernorm.weight": "model-00001-of-00014.safetensors",
24
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
25
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
26
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
27
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
28
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
29
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
30
+ "model.layers.10.mlp.gate_up_proj.weight": "model-00003-of-00014.safetensors",
31
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
32
+ "model.layers.10.post_mlp_layernorm.weight": "model-00003-of-00014.safetensors",
33
+ "model.layers.10.post_self_attn_layernorm.weight": "model-00003-of-00014.safetensors",
34
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
35
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
36
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
37
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
38
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
39
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
40
+ "model.layers.11.mlp.gate_up_proj.weight": "model-00003-of-00014.safetensors",
41
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
42
+ "model.layers.11.post_mlp_layernorm.weight": "model-00003-of-00014.safetensors",
43
+ "model.layers.11.post_self_attn_layernorm.weight": "model-00003-of-00014.safetensors",
44
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
45
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
46
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
47
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
48
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00014.safetensors",
49
+ "model.layers.12.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
50
+ "model.layers.12.mlp.gate_up_proj.weight": "model-00003-of-00014.safetensors",
51
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
52
+ "model.layers.12.post_mlp_layernorm.weight": "model-00004-of-00014.safetensors",
53
+ "model.layers.12.post_self_attn_layernorm.weight": "model-00004-of-00014.safetensors",
54
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
55
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
56
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
57
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
58
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
59
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
60
+ "model.layers.13.mlp.gate_up_proj.weight": "model-00004-of-00014.safetensors",
61
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
62
+ "model.layers.13.post_mlp_layernorm.weight": "model-00004-of-00014.safetensors",
63
+ "model.layers.13.post_self_attn_layernorm.weight": "model-00004-of-00014.safetensors",
64
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
65
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
66
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
67
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
68
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
69
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
70
+ "model.layers.14.mlp.gate_up_proj.weight": "model-00004-of-00014.safetensors",
71
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
72
+ "model.layers.14.post_mlp_layernorm.weight": "model-00004-of-00014.safetensors",
73
+ "model.layers.14.post_self_attn_layernorm.weight": "model-00004-of-00014.safetensors",
74
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
75
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
76
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
77
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
78
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
79
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
80
+ "model.layers.15.mlp.gate_up_proj.weight": "model-00004-of-00014.safetensors",
81
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
82
+ "model.layers.15.post_mlp_layernorm.weight": "model-00004-of-00014.safetensors",
83
+ "model.layers.15.post_self_attn_layernorm.weight": "model-00004-of-00014.safetensors",
84
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
85
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
86
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
87
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
88
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
89
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
90
+ "model.layers.16.mlp.gate_up_proj.weight": "model-00004-of-00014.safetensors",
91
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
92
+ "model.layers.16.post_mlp_layernorm.weight": "model-00004-of-00014.safetensors",
93
+ "model.layers.16.post_self_attn_layernorm.weight": "model-00004-of-00014.safetensors",
94
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
95
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
96
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
97
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
98
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00014.safetensors",
99
+ "model.layers.17.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
100
+ "model.layers.17.mlp.gate_up_proj.weight": "model-00005-of-00014.safetensors",
101
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
102
+ "model.layers.17.post_mlp_layernorm.weight": "model-00005-of-00014.safetensors",
103
+ "model.layers.17.post_self_attn_layernorm.weight": "model-00005-of-00014.safetensors",
104
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
105
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
106
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
107
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
108
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
109
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
110
+ "model.layers.18.mlp.gate_up_proj.weight": "model-00005-of-00014.safetensors",
111
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
112
+ "model.layers.18.post_mlp_layernorm.weight": "model-00005-of-00014.safetensors",
113
+ "model.layers.18.post_self_attn_layernorm.weight": "model-00005-of-00014.safetensors",
114
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
115
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
116
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
117
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
118
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
119
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
120
+ "model.layers.19.mlp.gate_up_proj.weight": "model-00005-of-00014.safetensors",
121
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
122
+ "model.layers.19.post_mlp_layernorm.weight": "model-00005-of-00014.safetensors",
123
+ "model.layers.19.post_self_attn_layernorm.weight": "model-00005-of-00014.safetensors",
124
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
125
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
126
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
127
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
128
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00014.safetensors",
129
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
130
+ "model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00014.safetensors",
131
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
132
+ "model.layers.2.post_mlp_layernorm.weight": "model-00001-of-00014.safetensors",
133
+ "model.layers.2.post_self_attn_layernorm.weight": "model-00001-of-00014.safetensors",
134
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
135
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
136
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
137
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
138
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
139
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
140
+ "model.layers.20.mlp.gate_up_proj.weight": "model-00005-of-00014.safetensors",
141
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
142
+ "model.layers.20.post_mlp_layernorm.weight": "model-00005-of-00014.safetensors",
143
+ "model.layers.20.post_self_attn_layernorm.weight": "model-00005-of-00014.safetensors",
144
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
145
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
146
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
147
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
148
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
149
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
150
+ "model.layers.21.mlp.gate_up_proj.weight": "model-00005-of-00014.safetensors",
151
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
152
+ "model.layers.21.post_mlp_layernorm.weight": "model-00005-of-00014.safetensors",
153
+ "model.layers.21.post_self_attn_layernorm.weight": "model-00005-of-00014.safetensors",
154
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
155
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
156
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
157
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
158
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00014.safetensors",
159
+ "model.layers.22.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
160
+ "model.layers.22.mlp.gate_up_proj.weight": "model-00006-of-00014.safetensors",
161
+ "model.layers.22.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
162
+ "model.layers.22.post_mlp_layernorm.weight": "model-00006-of-00014.safetensors",
163
+ "model.layers.22.post_self_attn_layernorm.weight": "model-00006-of-00014.safetensors",
164
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
165
+ "model.layers.22.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
166
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
167
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
168
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
169
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
170
+ "model.layers.23.mlp.gate_up_proj.weight": "model-00006-of-00014.safetensors",
171
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
172
+ "model.layers.23.post_mlp_layernorm.weight": "model-00006-of-00014.safetensors",
173
+ "model.layers.23.post_self_attn_layernorm.weight": "model-00006-of-00014.safetensors",
174
+ "model.layers.23.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
175
+ "model.layers.23.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
176
+ "model.layers.23.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
177
+ "model.layers.23.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
178
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
179
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
180
+ "model.layers.24.mlp.gate_up_proj.weight": "model-00006-of-00014.safetensors",
181
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
182
+ "model.layers.24.post_mlp_layernorm.weight": "model-00006-of-00014.safetensors",
183
+ "model.layers.24.post_self_attn_layernorm.weight": "model-00006-of-00014.safetensors",
184
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
185
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
186
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
187
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
188
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
189
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
190
+ "model.layers.25.mlp.gate_up_proj.weight": "model-00006-of-00014.safetensors",
191
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
192
+ "model.layers.25.post_mlp_layernorm.weight": "model-00006-of-00014.safetensors",
193
+ "model.layers.25.post_self_attn_layernorm.weight": "model-00006-of-00014.safetensors",
194
+ "model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
195
+ "model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
196
+ "model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
197
+ "model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
198
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
199
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
200
+ "model.layers.26.mlp.gate_up_proj.weight": "model-00006-of-00014.safetensors",
201
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
202
+ "model.layers.26.post_mlp_layernorm.weight": "model-00006-of-00014.safetensors",
203
+ "model.layers.26.post_self_attn_layernorm.weight": "model-00006-of-00014.safetensors",
204
+ "model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
205
+ "model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
206
+ "model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
207
+ "model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
208
+ "model.layers.27.input_layernorm.weight": "model-00007-of-00014.safetensors",
209
+ "model.layers.27.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
210
+ "model.layers.27.mlp.gate_up_proj.weight": "model-00007-of-00014.safetensors",
211
+ "model.layers.27.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
212
+ "model.layers.27.post_mlp_layernorm.weight": "model-00007-of-00014.safetensors",
213
+ "model.layers.27.post_self_attn_layernorm.weight": "model-00007-of-00014.safetensors",
214
+ "model.layers.27.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
215
+ "model.layers.27.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
216
+ "model.layers.27.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
217
+ "model.layers.27.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
218
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
219
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
220
+ "model.layers.28.mlp.gate_up_proj.weight": "model-00007-of-00014.safetensors",
221
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
222
+ "model.layers.28.post_mlp_layernorm.weight": "model-00007-of-00014.safetensors",
223
+ "model.layers.28.post_self_attn_layernorm.weight": "model-00007-of-00014.safetensors",
224
+ "model.layers.28.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
225
+ "model.layers.28.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
226
+ "model.layers.28.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
227
+ "model.layers.28.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
228
+ "model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
229
+ "model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
230
+ "model.layers.29.mlp.gate_up_proj.weight": "model-00007-of-00014.safetensors",
231
+ "model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
232
+ "model.layers.29.post_mlp_layernorm.weight": "model-00007-of-00014.safetensors",
233
+ "model.layers.29.post_self_attn_layernorm.weight": "model-00007-of-00014.safetensors",
234
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
235
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
236
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
237
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
238
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
239
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
240
+ "model.layers.3.mlp.gate_up_proj.weight": "model-00002-of-00014.safetensors",
241
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
242
+ "model.layers.3.post_mlp_layernorm.weight": "model-00002-of-00014.safetensors",
243
+ "model.layers.3.post_self_attn_layernorm.weight": "model-00002-of-00014.safetensors",
244
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
245
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
246
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
247
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
248
+ "model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
249
+ "model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
250
+ "model.layers.30.mlp.gate_up_proj.weight": "model-00007-of-00014.safetensors",
251
+ "model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
252
+ "model.layers.30.post_mlp_layernorm.weight": "model-00007-of-00014.safetensors",
253
+ "model.layers.30.post_self_attn_layernorm.weight": "model-00007-of-00014.safetensors",
254
+ "model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
255
+ "model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
256
+ "model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
257
+ "model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
258
+ "model.layers.31.input_layernorm.weight": "model-00008-of-00014.safetensors",
259
+ "model.layers.31.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
260
+ "model.layers.31.mlp.gate_up_proj.weight": "model-00007-of-00014.safetensors",
261
+ "model.layers.31.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
262
+ "model.layers.31.post_mlp_layernorm.weight": "model-00008-of-00014.safetensors",
263
+ "model.layers.31.post_self_attn_layernorm.weight": "model-00008-of-00014.safetensors",
264
+ "model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
265
+ "model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
266
+ "model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
267
+ "model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
268
+ "model.layers.32.input_layernorm.weight": "model-00008-of-00014.safetensors",
269
+ "model.layers.32.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
270
+ "model.layers.32.mlp.gate_up_proj.weight": "model-00008-of-00014.safetensors",
271
+ "model.layers.32.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
272
+ "model.layers.32.post_mlp_layernorm.weight": "model-00008-of-00014.safetensors",
273
+ "model.layers.32.post_self_attn_layernorm.weight": "model-00008-of-00014.safetensors",
274
+ "model.layers.32.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
275
+ "model.layers.32.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
276
+ "model.layers.32.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
277
+ "model.layers.32.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
278
+ "model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
279
+ "model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
280
+ "model.layers.33.mlp.gate_up_proj.weight": "model-00008-of-00014.safetensors",
281
+ "model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
282
+ "model.layers.33.post_mlp_layernorm.weight": "model-00008-of-00014.safetensors",
283
+ "model.layers.33.post_self_attn_layernorm.weight": "model-00008-of-00014.safetensors",
284
+ "model.layers.33.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
285
+ "model.layers.33.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
286
+ "model.layers.33.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
287
+ "model.layers.33.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
288
+ "model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
289
+ "model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
290
+ "model.layers.34.mlp.gate_up_proj.weight": "model-00008-of-00014.safetensors",
291
+ "model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
292
+ "model.layers.34.post_mlp_layernorm.weight": "model-00008-of-00014.safetensors",
293
+ "model.layers.34.post_self_attn_layernorm.weight": "model-00008-of-00014.safetensors",
294
+ "model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
295
+ "model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
296
+ "model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
297
+ "model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
298
+ "model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
299
+ "model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
300
+ "model.layers.35.mlp.gate_up_proj.weight": "model-00008-of-00014.safetensors",
301
+ "model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
302
+ "model.layers.35.post_mlp_layernorm.weight": "model-00008-of-00014.safetensors",
303
+ "model.layers.35.post_self_attn_layernorm.weight": "model-00008-of-00014.safetensors",
304
+ "model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
305
+ "model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
306
+ "model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
307
+ "model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
308
+ "model.layers.36.input_layernorm.weight": "model-00009-of-00014.safetensors",
309
+ "model.layers.36.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
310
+ "model.layers.36.mlp.gate_up_proj.weight": "model-00009-of-00014.safetensors",
311
+ "model.layers.36.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
312
+ "model.layers.36.post_mlp_layernorm.weight": "model-00009-of-00014.safetensors",
313
+ "model.layers.36.post_self_attn_layernorm.weight": "model-00009-of-00014.safetensors",
314
+ "model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
315
+ "model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
316
+ "model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
317
+ "model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
318
+ "model.layers.37.input_layernorm.weight": "model-00009-of-00014.safetensors",
319
+ "model.layers.37.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
320
+ "model.layers.37.mlp.gate_up_proj.weight": "model-00009-of-00014.safetensors",
321
+ "model.layers.37.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
322
+ "model.layers.37.post_mlp_layernorm.weight": "model-00009-of-00014.safetensors",
323
+ "model.layers.37.post_self_attn_layernorm.weight": "model-00009-of-00014.safetensors",
324
+ "model.layers.37.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
325
+ "model.layers.37.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
326
+ "model.layers.37.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
327
+ "model.layers.37.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
328
+ "model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
329
+ "model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
330
+ "model.layers.38.mlp.gate_up_proj.weight": "model-00009-of-00014.safetensors",
331
+ "model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
332
+ "model.layers.38.post_mlp_layernorm.weight": "model-00009-of-00014.safetensors",
333
+ "model.layers.38.post_self_attn_layernorm.weight": "model-00009-of-00014.safetensors",
334
+ "model.layers.38.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
335
+ "model.layers.38.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
336
+ "model.layers.38.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
337
+ "model.layers.38.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
338
+ "model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
339
+ "model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
340
+ "model.layers.39.mlp.gate_up_proj.weight": "model-00009-of-00014.safetensors",
341
+ "model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
342
+ "model.layers.39.post_mlp_layernorm.weight": "model-00009-of-00014.safetensors",
343
+ "model.layers.39.post_self_attn_layernorm.weight": "model-00009-of-00014.safetensors",
344
+ "model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
345
+ "model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
346
+ "model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
347
+ "model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
348
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
349
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
350
+ "model.layers.4.mlp.gate_up_proj.weight": "model-00002-of-00014.safetensors",
351
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
352
+ "model.layers.4.post_mlp_layernorm.weight": "model-00002-of-00014.safetensors",
353
+ "model.layers.4.post_self_attn_layernorm.weight": "model-00002-of-00014.safetensors",
354
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
355
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
356
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
357
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
358
+ "model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
359
+ "model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
360
+ "model.layers.40.mlp.gate_up_proj.weight": "model-00009-of-00014.safetensors",
361
+ "model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
362
+ "model.layers.40.post_mlp_layernorm.weight": "model-00009-of-00014.safetensors",
363
+ "model.layers.40.post_self_attn_layernorm.weight": "model-00009-of-00014.safetensors",
364
+ "model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
365
+ "model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
366
+ "model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
367
+ "model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
368
+ "model.layers.41.input_layernorm.weight": "model-00010-of-00014.safetensors",
369
+ "model.layers.41.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
370
+ "model.layers.41.mlp.gate_up_proj.weight": "model-00010-of-00014.safetensors",
371
+ "model.layers.41.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
372
+ "model.layers.41.post_mlp_layernorm.weight": "model-00010-of-00014.safetensors",
373
+ "model.layers.41.post_self_attn_layernorm.weight": "model-00010-of-00014.safetensors",
374
+ "model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
375
+ "model.layers.41.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
376
+ "model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
377
+ "model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
378
+ "model.layers.42.input_layernorm.weight": "model-00010-of-00014.safetensors",
379
+ "model.layers.42.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
380
+ "model.layers.42.mlp.gate_up_proj.weight": "model-00010-of-00014.safetensors",
381
+ "model.layers.42.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
382
+ "model.layers.42.post_mlp_layernorm.weight": "model-00010-of-00014.safetensors",
383
+ "model.layers.42.post_self_attn_layernorm.weight": "model-00010-of-00014.safetensors",
384
+ "model.layers.42.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
385
+ "model.layers.42.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
386
+ "model.layers.42.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
387
+ "model.layers.42.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
388
+ "model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
389
+ "model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
390
+ "model.layers.43.mlp.gate_up_proj.weight": "model-00010-of-00014.safetensors",
391
+ "model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
392
+ "model.layers.43.post_mlp_layernorm.weight": "model-00010-of-00014.safetensors",
393
+ "model.layers.43.post_self_attn_layernorm.weight": "model-00010-of-00014.safetensors",
394
+ "model.layers.43.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
395
+ "model.layers.43.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
396
+ "model.layers.43.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
397
+ "model.layers.43.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
398
+ "model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
399
+ "model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
400
+ "model.layers.44.mlp.gate_up_proj.weight": "model-00010-of-00014.safetensors",
401
+ "model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
402
+ "model.layers.44.post_mlp_layernorm.weight": "model-00010-of-00014.safetensors",
403
+ "model.layers.44.post_self_attn_layernorm.weight": "model-00010-of-00014.safetensors",
404
+ "model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
405
+ "model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
406
+ "model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
407
+ "model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
408
+ "model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
409
+ "model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
410
+ "model.layers.45.mlp.gate_up_proj.weight": "model-00010-of-00014.safetensors",
411
+ "model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
412
+ "model.layers.45.post_mlp_layernorm.weight": "model-00010-of-00014.safetensors",
413
+ "model.layers.45.post_self_attn_layernorm.weight": "model-00010-of-00014.safetensors",
414
+ "model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
415
+ "model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
416
+ "model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
417
+ "model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
418
+ "model.layers.46.input_layernorm.weight": "model-00011-of-00014.safetensors",
419
+ "model.layers.46.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
420
+ "model.layers.46.mlp.gate_up_proj.weight": "model-00011-of-00014.safetensors",
421
+ "model.layers.46.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
422
+ "model.layers.46.post_mlp_layernorm.weight": "model-00011-of-00014.safetensors",
423
+ "model.layers.46.post_self_attn_layernorm.weight": "model-00011-of-00014.safetensors",
424
+ "model.layers.46.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
425
+ "model.layers.46.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
426
+ "model.layers.46.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
427
+ "model.layers.46.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
428
+ "model.layers.47.input_layernorm.weight": "model-00011-of-00014.safetensors",
429
+ "model.layers.47.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
430
+ "model.layers.47.mlp.gate_up_proj.weight": "model-00011-of-00014.safetensors",
431
+ "model.layers.47.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
432
+ "model.layers.47.post_mlp_layernorm.weight": "model-00011-of-00014.safetensors",
433
+ "model.layers.47.post_self_attn_layernorm.weight": "model-00011-of-00014.safetensors",
434
+ "model.layers.47.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
435
+ "model.layers.47.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
436
+ "model.layers.47.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
437
+ "model.layers.47.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
438
+ "model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
439
+ "model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
440
+ "model.layers.48.mlp.gate_up_proj.weight": "model-00011-of-00014.safetensors",
441
+ "model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
442
+ "model.layers.48.post_mlp_layernorm.weight": "model-00011-of-00014.safetensors",
443
+ "model.layers.48.post_self_attn_layernorm.weight": "model-00011-of-00014.safetensors",
444
+ "model.layers.48.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
445
+ "model.layers.48.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
446
+ "model.layers.48.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
447
+ "model.layers.48.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
448
+ "model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
449
+ "model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
450
+ "model.layers.49.mlp.gate_up_proj.weight": "model-00011-of-00014.safetensors",
451
+ "model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
452
+ "model.layers.49.post_mlp_layernorm.weight": "model-00011-of-00014.safetensors",
453
+ "model.layers.49.post_self_attn_layernorm.weight": "model-00011-of-00014.safetensors",
454
+ "model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
455
+ "model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
456
+ "model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
457
+ "model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
458
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
459
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
460
+ "model.layers.5.mlp.gate_up_proj.weight": "model-00002-of-00014.safetensors",
461
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
462
+ "model.layers.5.post_mlp_layernorm.weight": "model-00002-of-00014.safetensors",
463
+ "model.layers.5.post_self_attn_layernorm.weight": "model-00002-of-00014.safetensors",
464
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
465
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
466
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
467
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
468
+ "model.layers.50.input_layernorm.weight": "model-00012-of-00014.safetensors",
469
+ "model.layers.50.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
470
+ "model.layers.50.mlp.gate_up_proj.weight": "model-00011-of-00014.safetensors",
471
+ "model.layers.50.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
472
+ "model.layers.50.post_mlp_layernorm.weight": "model-00012-of-00014.safetensors",
473
+ "model.layers.50.post_self_attn_layernorm.weight": "model-00012-of-00014.safetensors",
474
+ "model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
475
+ "model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
476
+ "model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
477
+ "model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
478
+ "model.layers.51.input_layernorm.weight": "model-00012-of-00014.safetensors",
479
+ "model.layers.51.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
480
+ "model.layers.51.mlp.gate_up_proj.weight": "model-00012-of-00014.safetensors",
481
+ "model.layers.51.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
482
+ "model.layers.51.post_mlp_layernorm.weight": "model-00012-of-00014.safetensors",
483
+ "model.layers.51.post_self_attn_layernorm.weight": "model-00012-of-00014.safetensors",
484
+ "model.layers.51.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
485
+ "model.layers.51.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
486
+ "model.layers.51.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
487
+ "model.layers.51.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
488
+ "model.layers.52.input_layernorm.weight": "model-00012-of-00014.safetensors",
489
+ "model.layers.52.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
490
+ "model.layers.52.mlp.gate_up_proj.weight": "model-00012-of-00014.safetensors",
491
+ "model.layers.52.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
492
+ "model.layers.52.post_mlp_layernorm.weight": "model-00012-of-00014.safetensors",
493
+ "model.layers.52.post_self_attn_layernorm.weight": "model-00012-of-00014.safetensors",
494
+ "model.layers.52.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
495
+ "model.layers.52.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
496
+ "model.layers.52.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
497
+ "model.layers.52.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
498
+ "model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
499
+ "model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
500
+ "model.layers.53.mlp.gate_up_proj.weight": "model-00012-of-00014.safetensors",
501
+ "model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
502
+ "model.layers.53.post_mlp_layernorm.weight": "model-00012-of-00014.safetensors",
503
+ "model.layers.53.post_self_attn_layernorm.weight": "model-00012-of-00014.safetensors",
504
+ "model.layers.53.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
505
+ "model.layers.53.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
506
+ "model.layers.53.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
507
+ "model.layers.53.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
508
+ "model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
509
+ "model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
510
+ "model.layers.54.mlp.gate_up_proj.weight": "model-00012-of-00014.safetensors",
511
+ "model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
512
+ "model.layers.54.post_mlp_layernorm.weight": "model-00012-of-00014.safetensors",
513
+ "model.layers.54.post_self_attn_layernorm.weight": "model-00012-of-00014.safetensors",
514
+ "model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
515
+ "model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
516
+ "model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
517
+ "model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
518
+ "model.layers.55.input_layernorm.weight": "model-00013-of-00014.safetensors",
519
+ "model.layers.55.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
520
+ "model.layers.55.mlp.gate_up_proj.weight": "model-00013-of-00014.safetensors",
521
+ "model.layers.55.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
522
+ "model.layers.55.post_mlp_layernorm.weight": "model-00013-of-00014.safetensors",
523
+ "model.layers.55.post_self_attn_layernorm.weight": "model-00013-of-00014.safetensors",
524
+ "model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
525
+ "model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
526
+ "model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
527
+ "model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
528
+ "model.layers.56.input_layernorm.weight": "model-00013-of-00014.safetensors",
529
+ "model.layers.56.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
530
+ "model.layers.56.mlp.gate_up_proj.weight": "model-00013-of-00014.safetensors",
531
+ "model.layers.56.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
532
+ "model.layers.56.post_mlp_layernorm.weight": "model-00013-of-00014.safetensors",
533
+ "model.layers.56.post_self_attn_layernorm.weight": "model-00013-of-00014.safetensors",
534
+ "model.layers.56.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
535
+ "model.layers.56.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
536
+ "model.layers.56.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
537
+ "model.layers.56.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
538
+ "model.layers.57.input_layernorm.weight": "model-00013-of-00014.safetensors",
539
+ "model.layers.57.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
540
+ "model.layers.57.mlp.gate_up_proj.weight": "model-00013-of-00014.safetensors",
541
+ "model.layers.57.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
542
+ "model.layers.57.post_mlp_layernorm.weight": "model-00013-of-00014.safetensors",
543
+ "model.layers.57.post_self_attn_layernorm.weight": "model-00013-of-00014.safetensors",
544
+ "model.layers.57.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
545
+ "model.layers.57.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
546
+ "model.layers.57.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
547
+ "model.layers.57.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
548
+ "model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
549
+ "model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
550
+ "model.layers.58.mlp.gate_up_proj.weight": "model-00013-of-00014.safetensors",
551
+ "model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
552
+ "model.layers.58.post_mlp_layernorm.weight": "model-00013-of-00014.safetensors",
553
+ "model.layers.58.post_self_attn_layernorm.weight": "model-00013-of-00014.safetensors",
554
+ "model.layers.58.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
555
+ "model.layers.58.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
556
+ "model.layers.58.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
557
+ "model.layers.58.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
558
+ "model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
559
+ "model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
560
+ "model.layers.59.mlp.gate_up_proj.weight": "model-00013-of-00014.safetensors",
561
+ "model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
562
+ "model.layers.59.post_mlp_layernorm.weight": "model-00013-of-00014.safetensors",
563
+ "model.layers.59.post_self_attn_layernorm.weight": "model-00013-of-00014.safetensors",
564
+ "model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
565
+ "model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
566
+ "model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
567
+ "model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
568
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
569
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
570
+ "model.layers.6.mlp.gate_up_proj.weight": "model-00002-of-00014.safetensors",
571
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
572
+ "model.layers.6.post_mlp_layernorm.weight": "model-00002-of-00014.safetensors",
573
+ "model.layers.6.post_self_attn_layernorm.weight": "model-00002-of-00014.safetensors",
574
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
575
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
576
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
577
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
578
+ "model.layers.60.input_layernorm.weight": "model-00014-of-00014.safetensors",
579
+ "model.layers.60.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
580
+ "model.layers.60.mlp.gate_up_proj.weight": "model-00014-of-00014.safetensors",
581
+ "model.layers.60.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
582
+ "model.layers.60.post_mlp_layernorm.weight": "model-00014-of-00014.safetensors",
583
+ "model.layers.60.post_self_attn_layernorm.weight": "model-00014-of-00014.safetensors",
584
+ "model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
585
+ "model.layers.60.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
586
+ "model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
587
+ "model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
588
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00014.safetensors",
589
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
590
+ "model.layers.7.mlp.gate_up_proj.weight": "model-00002-of-00014.safetensors",
591
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
592
+ "model.layers.7.post_mlp_layernorm.weight": "model-00002-of-00014.safetensors",
593
+ "model.layers.7.post_self_attn_layernorm.weight": "model-00002-of-00014.safetensors",
594
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
595
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
596
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
597
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
598
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
599
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
600
+ "model.layers.8.mlp.gate_up_proj.weight": "model-00003-of-00014.safetensors",
601
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
602
+ "model.layers.8.post_mlp_layernorm.weight": "model-00003-of-00014.safetensors",
603
+ "model.layers.8.post_self_attn_layernorm.weight": "model-00003-of-00014.safetensors",
604
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
605
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
606
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
607
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
608
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
609
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
610
+ "model.layers.9.mlp.gate_up_proj.weight": "model-00003-of-00014.safetensors",
611
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
612
+ "model.layers.9.post_mlp_layernorm.weight": "model-00003-of-00014.safetensors",
613
+ "model.layers.9.post_self_attn_layernorm.weight": "model-00003-of-00014.safetensors",
614
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
615
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
616
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
617
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
618
+ "model.norm.weight": "model-00014-of-00014.safetensors"
619
+ }
620
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b75930684c955ecf0c0d4663e934224dd9427dadc59769259f2549965d357d51
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e0fc296e6f82fe9a1f2b1274ad316ee068039fb68d980e22ef7add272b3df2c
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6399da60ecd02ef2a24796b1a0b8d7be3d9569d07a5cca1dae98bb711d07adc
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e1f1975564e49e4b373c7185880a8efd678d42e7f4c9f4eb2ca3822853f4c41
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f85c9d057fba0d1cd5d7ef8ef2d2c0bcab17f8bcefd896e1954ae652e7ea9742
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fae7634eccbdfd7191d6e3316d715529147ef6845a5db00336d6d8894115f6b9
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc671e9ecff8caa15e423e1d0ff23ea3b53712f483676c07e0841767cc8899f5
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89ae733cbfe3211b283a70ccd5dc72b6a7638e14344d7116a42b9efff9d6c977
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d686792a62a3473c4069a4ad9dc0372c5d0064cd336c52f14990c739782b76b
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "[MASK]",
5
+ "[gMASK]",
6
+ "[sMASK]",
7
+ "<sop>",
8
+ "<eop>",
9
+ "<|system|>",
10
+ "<|user|>",
11
+ "<|assistant|>",
12
+ "<|observation|>",
13
+ "<|begin_of_image|>",
14
+ "<|end_of_image|>",
15
+ "<|begin_of_video|>",
16
+ "<|end_of_video|>"
17
+ ],
18
+ "eos_token": {
19
+ "content": "<|im_end|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|endoftext|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:373d3e2e65cc5e215af93845ef1f79d849095ee1428047c2909814e297bc2d33
3
+ size 19966873
tokenizer_config.json ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "151329": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "151330": {
12
+ "content": "[MASK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "151331": {
20
+ "content": "[gMASK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "151332": {
28
+ "content": "[sMASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "151333": {
36
+ "content": "<sop>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "151334": {
44
+ "content": "<eop>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "151335": {
52
+ "content": "<|system|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "151336": {
60
+ "content": "<|user|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "151337": {
68
+ "content": "<|assistant|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "151338": {
76
+ "content": "<|observation|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "151339": {
84
+ "content": "<|begin_of_image|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "151340": {
92
+ "content": "<|end_of_image|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "151341": {
100
+ "content": "<|begin_of_video|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "151342": {
108
+ "content": "<|end_of_video|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "151343": {
116
+ "content": "<|im_end|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "151344": {
124
+ "content": "<|im_start|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ }
131
+ },
132
+ "additional_special_tokens": [
133
+ "<|endoftext|>",
134
+ "[MASK]",
135
+ "[gMASK]",
136
+ "[sMASK]",
137
+ "<sop>",
138
+ "<eop>",
139
+ "<|system|>",
140
+ "<|user|>",
141
+ "<|assistant|>",
142
+ "<|observation|>",
143
+ "<|begin_of_image|>",
144
+ "<|end_of_image|>",
145
+ "<|begin_of_video|>",
146
+ "<|end_of_video|>"
147
+ ],
148
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
149
+ "clean_up_tokenization_spaces": false,
150
+ "do_lower_case": false,
151
+ "eos_token": "<|im_end|>",
152
+ "extra_special_tokens": {},
153
+ "model_input_names": [
154
+ "input_ids",
155
+ "attention_mask"
156
+ ],
157
+ "model_max_length": 128000,
158
+ "pad_token": "<|endoftext|>",
159
+ "padding_side": "left",
160
+ "remove_space": false,
161
+ "tokenizer_class": "PreTrainedTokenizer"
162
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17426dc4e3003d8e7e76ea5020d6bb44ff57f75e2f82abb9b70ffbbded52c193
3
+ size 9233
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)