|
import glob |
|
import re |
|
import shutil |
|
import sys |
|
|
|
import accelerate |
|
import torch |
|
from safetensors import safe_open |
|
from configuration_glm4_shared_moe import Glm4SharedMoeConfig |
|
from modeling_glm4_shared_moe import Glm4SharedMoeForCausalLM |
|
from transformers.models.glm4_moe.configuration_glm4_moe import Glm4MoeConfig |
|
|
|
input_model = sys.argv[1] |
|
output_model_path = sys.argv[2] |
|
|
|
auto_map = { |
|
"AutoConfig": "configuration_glm4_shared_moe.Glm4SharedMoeConfig", |
|
"AutoModel": "modeling_glm4_shared_moe.Glm4SharedMoeModel", |
|
"AutoModelForCausalLM": "modeling_glm4_shared_moe.Glm4SharedMoeForCausalLM" |
|
} |
|
|
|
cfg_standard_moe = Glm4MoeConfig.from_pretrained(input_model) |
|
cfg_shared_moe = Glm4SharedMoeConfig( |
|
auto_map=auto_map, |
|
vocab_size=cfg_standard_moe.vocab_size, |
|
hidden_size=cfg_standard_moe.hidden_size, |
|
intermediate_size=cfg_standard_moe.intermediate_size, |
|
num_hidden_layers=cfg_standard_moe.num_hidden_layers, |
|
num_attention_heads=cfg_standard_moe.num_attention_heads, |
|
num_key_value_heads=cfg_standard_moe.num_key_value_heads, |
|
hidden_act=cfg_standard_moe.hidden_act, |
|
max_position_embeddings=cfg_standard_moe.max_position_embeddings, |
|
initializer_range=cfg_standard_moe.initializer_range, |
|
rms_norm_eps=cfg_standard_moe.rms_norm_eps, |
|
use_cache=cfg_standard_moe.use_cache, |
|
tie_word_embeddings=cfg_standard_moe.tie_word_embeddings, |
|
rope_theta=cfg_standard_moe.rope_theta, |
|
rope_scaling=cfg_standard_moe.rope_scaling, |
|
attention_bias=cfg_standard_moe.attention_bias, |
|
attention_dropout=cfg_standard_moe.attention_dropout, |
|
moe_intermediate_size=cfg_standard_moe.moe_intermediate_size, |
|
num_experts_per_tok=cfg_standard_moe.num_experts_per_tok, |
|
n_routed_experts=cfg_standard_moe.n_routed_experts, |
|
n_shared_experts=cfg_standard_moe.n_shared_experts, |
|
norm_topk_prob=cfg_standard_moe.norm_topk_prob, |
|
head_dim=cfg_standard_moe.head_dim, |
|
pad_token_id=cfg_standard_moe.pad_token_id, |
|
eos_token_id=cfg_standard_moe.eos_token_id, |
|
routed_scaling_factor=cfg_standard_moe.routed_scaling_factor, |
|
first_k_dense_replace=cfg_standard_moe.first_k_dense_replace, |
|
num_nextn_predict_layers=cfg_standard_moe.num_nextn_predict_layers, |
|
) |
|
|
|
num_experts = cfg_standard_moe.n_routed_experts |
|
|
|
with accelerate.init_empty_weights(): |
|
model_shared_moe = Glm4SharedMoeForCausalLM(cfg_shared_moe) |
|
|
|
model_shared_moe = model_shared_moe.to(torch.bfloat16) |
|
new_state_dict = {} |
|
pattern = f"{input_model}/model-*-of-*.safetensors" |
|
files = sorted(glob.glob(pattern)) |
|
|
|
if len(files) == 0: |
|
raise FileNotFoundError |
|
tensors = {} |
|
|
|
for file_path in files: |
|
print(f"processing {file_path}") |
|
with safe_open(file_path, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
tensor = f.get_tensor(key) |
|
tensors[key] = tensor |
|
|
|
for key in tensors: |
|
try: |
|
layer_num = int(re.search(r"\d+", key).group()) |
|
if layer_num >= cfg_standard_moe.num_hidden_layers: |
|
continue |
|
except: |
|
pass |
|
if "experts" not in key or "shared_experts" in key: |
|
new_state_dict[key] = tensors[key] |
|
elif "experts.0" in key: |
|
layer_num = int(re.search(r"\d+", key).group()) |
|
new_state_dict[ |
|
f"model.layers.{layer_num}.mlp.moe_mlp.output_experts.weight" |
|
] = torch.stack( |
|
[ |
|
tensors[f"model.layers.{layer_num}.mlp.experts.{i}.down_proj.weight"] |
|
for i in range(num_experts) |
|
] |
|
) |
|
new_state_dict[f"model.layers.{layer_num}.mlp.moe_mlp.experts.weight"] = ( |
|
torch.stack( |
|
[ |
|
torch.cat( |
|
[ |
|
tensors[ |
|
f"model.layers.{layer_num}.mlp.experts.{i}.up_proj.weight" |
|
], |
|
tensors[ |
|
f"model.layers.{layer_num}.mlp.experts.{i}.gate_proj.weight" |
|
], |
|
], |
|
dim=0, |
|
) |
|
for i in range(num_experts) |
|
] |
|
) |
|
) |
|
model_shared_moe.load_state_dict(new_state_dict, strict=True, assign=True) |
|
model_shared_moe.save_pretrained(output_model_path) |
|
cfg_shared_moe.save_pretrained(output_model_path) |
|
|
|
|
|
shutil.copy( |
|
"modeling_glm4_shared_moe.py", |
|
output_model_path + "/" + "modeling_glm4_shared_moe.py", |
|
) |
|
shutil.copy( |
|
"configuration_glm4_shared_moe.py", |
|
output_model_path + "/" + "configuration_glm4_shared_moe.py", |
|
) |
|
for i in ["chat_template.jinja", "tokenizer_config.json", "tokenizer.json"]: |
|
shutil.copy(input_model + "/" + i, output_model_path + "/" + i) |
|
|